
Object-Oriented
Programming
Languages
Interpretation

U T i C S

U N D E R G R A D U A T E T O P I C S
i n C O M P U T E R S C I E N C E

Iain D. Craig

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for
undergraduates studying in all areas of computing and information science. From core foundational
and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and
modern approach and are ideal for self-study or for a one- or two-semester course. The texts are
all authored by established experts in their fields, reviewed by an international advisory board, and
contain numerous examples and problems. Many include fully worked solutions.

Also in this series

Max Bramer
Principles of Data Mining
978-1-84628-765-7

Hanne Riis Nielson and Flemming Nielson
Semantics with Applications: An Appetizer
978-1-84628-691-9

Iain D. Craig

Object-Oriented
Programming
Languages:
Interpretation

Iain D. Craig, MA, PhD, FBCF, CITP

Series editor
Ian Mackie
École Polytechnique and King’s College London, UK

Advisory board
Samson Abramsky, University of Oxford, UK
Chris Hankin, Imperial College London, UK
Dexter Kozen, Cornell University, USA
Andrew Pitts, University of Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Denmark
Steven Skiena, Stony Brook University, USA
Iain Stewart, University of Durham, UK
David Zhang, The Hong Kong Polytechnic University, Hong Kong

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007921522

Undergraduate Topics in Computer Science ISSN 1863-7310
ISBN-10: 1-84628-773-1 e-ISBN-10: 1-84628-774-X
ISBN-13: 978-1-84628-773-2 e-ISBN-13: 978-1-84628-774-9

Printed on acid-free paper

© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Contents

1. Introduction . 1
1.1 Introduction . 1
1.2 Essential Properties of Objects . 3
1.3 Objects and Messages . 6
1.4 Pure and Impure Languages . 7
1.5 Mixed-Paradigm Languages . 9
1.6 Organisation of this Book . 9

2. Class Fundamentals . 13
2.1 Introduction . 13
2.2 Classes . 16
2.3 Instances . 20
2.4 Slots and Methods . 22
2.5 Slot Access . 23
2.6 Visibility and Accessibility . 25
2.7 Instance Creation . 31
2.8 Inheritance . 34

2.8.1 Introduction . 34
2.8.2 Definition of Inheritance . 35

2.9 Abstract Classes . 40
2.10 Iterators . 44
2.11 Part Objects . 49

3. Prototype and Actor Languages . 57
3.1 Introduction . 57
3.2 Prototype Languages . 57

vi Object-Oriented Programming Languages: Interpretation

3.3 The Concept of the Prototype . 58
3.3.1 Slots and Methods . 64
3.3.2 Message Passing . 65
3.3.3 Creating New Objects . 65
3.3.4 Delegation and Shared Structure . 67

3.4 Methods in Prototype Languages . 72
3.5 Actor Languages . 73

3.5.1 Introduction . 73
3.5.2 Actors . 73
3.5.3 Extensions to the Actor Concept . 78

4. Inheritance and Delegation . 83
4.1 Introduction . 83
4.2 Interpretations of Inheritance . 84
4.3 Inheritance as Subtyping . 85
4.4 Inheritance as Code Sharing . 87
4.5 Single Inheritance . 90
4.6 Calling More Abstract Methods . 91
4.7 Multiple Inheritance . 98
4.8 Multiple Inheritance Graph Shape . 100
4.9 Approaches to Multiple Inheritance . 106
4.10 Tree Inheritance . 106
4.11 Graph Inheritance . 108
4.12 Linearised Inheritance . 110
4.13 Implemented Multiple Inheritance Techniques 112

4.13.1 The CLOS Search Method . 112
4.13.2 Multiple Inheritance in C++ . 114
4.13.3 Multiple Inheritance in Eiffel . 115

4.14 Mixin Classes . 117
4.15 Alternatives to Multiple Inheritance . 120

4.15.1 Perspectives . 120
4.15.2 Interfaces in Java . 121
4.15.3 Delegation and Prototypes . 122

4.16 Aggregation . 124

5. Methods . 129
5.1 Introduction . 129
5.2 Methods and Objects . 131
5.3 Object Constructors and Methods . 134
5.4 Environments and Closures . 135

5.4.1 Introduction . 135
5.4.2 Environments: A More Formal Definition 136

Contents vii

5.4.3 Blocks in Smalltalk and SELF . 139
5.4.4 Block Structure in Beta . 143
5.4.5 Higher-Order Methods . 144
5.4.6 Methods and Inheritance . 146

5.5 Static and Dynamic Binding . 148

6. Types I: Types and Objects . 155
6.1 Introduction . 155
6.2 Inheritance and Types . 157

6.2.1 Telling What the Type Is . 159
6.2.2 Polymorphism . 164
6.2.3 Signatures . 164

6.3 Generic Polymorphism . 166
6.4 Overloading and Over–riding . 169
6.5 Languages with Root Classes . 173
6.6 Polyadicity and Default Parameters . 174

6.6.1 Variance . 176
6.7 Downcasting and Subtypes . 179
6.8 Review . 181

7. Types II: Types and Objects–Alternatives 185
7.1 Introduction . 185
7.2 Types and Implementations . 185
7.3 Hiding Implementation Details . 190
7.4 Classes and Type Operations . 194
7.5 Containers and Objects . 197

8. C# . 201
8.1 Introduction . 201
8.2 Classes and Instances . 202

8.2.1 Class and Instance Variables . 203
8.2.2 Access Levels . 204
8.2.3 Data and Method Access Modifiers 204
8.2.4 Instance Creation . 205
8.2.5 Static Constructors . 207
8.2.6 Finalization and Destruction . 207
8.2.7 Dot Notation and Member Access . 208
8.2.8 Abstract Classes . 208
8.2.9 Indexers . 208
8.2.10 Self Reference . 210

8.3 Inheritance . 210
8.3.1 Calling Base-Class Constructors . 211

viii Object-Oriented Programming Languages: Interpretation

8.3.2 Interfaces . 213
8.4 Methods and Operators . 215

8.4.1 Dispatch . 215
8.4.2 The Base Keyword . 217
8.4.3 Parameter Annotations . 218
8.4.4 Properties . 220
8.4.5 Delegates . 221
8.4.6 Operator Overloading . 223

8.5 Polymorphism and Types . 225
8.5.1 Structs . 225
8.5.2 Type Unification . 227

8.6 Base Class Library . 229

9. BeCecil . 231
9.1 Introduction . 231
9.2 Programming Standard OO Mechanisms . 232
9.3 Syntactic Sugar . 237
9.4 A Small Example . 238
9.5 Concluding Remarks . 239

Bibliography . 241

Index . 249

1
Introduction

1.1 Introduction

Object-oriented programming has opened a great many perspectives on the
concept of software and has been hailed as part of the solution to the so-called
“software crisis”. It has given the possibility that software components can be
constructed and reused with considerably more credibility. There are now many
case studies in which the reuse of object-oriented components has been made
and analysed. Object-oriented programming relates the programming activity
to that of modelling or simulation; objects are identified by a correspondence
with the objects found in the application area of the program and are used to
model those domain operations. Object-oriented programming also opens the
prospect of more flexible software that is able to respond dynamically to the
needs of the application at runtime.

It is very easy to think that object-oriented programming can be performed
in only one way. The prevalence of C++ and Java suggests that they are the
only way to approach the problem of what an object-oriented programming lan-
guage should look like. There are many approaches to this way of programming
and C++ and Java exemplify just one of these different approaches. Indeed, the
way in which the concept of the object is interpreted differs between approaches
and between languages.

The two main approaches found in object-oriented programming languages
are, respectively, class-based and prototype-based languages. Class-based lan-
guages are exemplified by Smalltalk [34], C++ [75, 74] and Java [47]. This

2 1. Introduction

approach is based upon the identification of common properties of objects and
their description in terms of a definitional structure called a class. The objects
manipulated by class-based programs are the result of instantiating classes.
In class-based programming, instances exist at runtime while classes typically
do not. Even in an interpreted language, instances are the entities that are
manipulated by programs; classes serve to define instances.

With the second approach, the prototype-based approach, matters are differ-
ent. According to the prototype-based approach, objects are created by means
of a copy operation (called cloning) which is applied to a prototype. Prototypes
define stereotypical objects. A clone of a prototype replicates the structure of
that prototype. Prototypes can be copied and modified to produce new proto-
types that can then be cloned to form new objects.

The prototype-based approach is less common than the class-based one,
although, as will be seen, it has a great deal to offer. There are other approaches,
but they are somewhat rare in their use. For example, instantiable modules can
be called objects. An instantiable module is a module like those in Modula-2
[81] which can be instantiated to produce multiple, independent objects or
entities (normally modules are declared and used—there is usually only one
instance of a module).

A significant problem with object-oriented programming is that it is very
difficult to find an account of the interpretation of the various constructs and an
explanation of the various concepts employed in such languages. The vast ma-
jority of books on object-oriented programming or languages concentrate on a
single paradigm, typically the class-based one. If one is interested in prototype-
based languages or in multiple inheritance, for example, it is necessary to engage
in extensive bibliographic searches.

The aim of this book is to present a comprehensive account of the primary
approaches to object-oriented programming languages and their concepts. It de-
scribes the interpretation of the constructs commonly found in object-oriented
languages; it presents an account of the semantics in English. In order to be
as comprehensive as possible, the book deals with class-based languages (such
as Smalltalk, Java and C++) as well as prototype-based ones (such as SELF
and Omega). In addition, instantiable module languages are considered where
appropriate.

Because the class-based approach to languages is the most common, it re-
ceives the greatest emphasis. Prototype-based languages are less common and
they are given their own chapter, a chapter which attempts to be as compre-
hensive as possible within a small but growing field.

Many issues interact in the semantics of object-oriented programming lan-
guages. Types, messages, inheritance and dispatch methods are just four gen-
eral issues, each of which can be considered in much more detail and which

1.2 Essential Properties of Objects 3

interact in complex ways in a full programming language. It is hoped that all
important issues are considered in adequate detail below. Along the way, other
issues relating to object-based languages are raised and discussed.

1.2 Essential Properties of Objects

Object-oriented languages are defined by a small set of properties. The extent
to which a particular language satisfies these properties defines how much of
an object-oriented language it is, as will be discussed below in Section 1.4. The
properties which will shortly be listed are, with the exception of the last, un-
controversial and all languages which are properly said to be “object oriented”
exhibit these essential properties.

An object is an independent entity which can be treated in isolation of
all other objects. It can be passed into and returned from procedures, can be
assigned to variables and stored in data structures like lists and arrays (i.e., is
a first-class construct). Each object has an identity which is distinct from all
others. Given any pair of objects, it is always possible to determine whether
they are the same or different. Objects are composed of data and operations;
the operations associated with an object typically act upon the data which it
contains. Objects represent logically distinct entities in a computation.

Objects also exhibit some more general properties:

– encapsulation;

– inheritance;

– polymorphism; and

– dynamic method binding.

We will briefly outline each of these properties. The reader is warned that a
more comprehensive and detailed account of each of these properties is given at
various points in the rest of this book. Indeed, inheritance and polymorphism
are so important (and so complex in their implications) that they are repre-
sented by chapters in their own right. The above properties are also closely
related and have mutually interacting implications; for this reason, they will
be the subject of repeated discussion below, each time in a slightly different
context and drawing out slightly different implications.

The property of encapsulation is the property of information hiding. En-
capsulation typically refers to the hiding of data and of the implementation of
an object. Data and code, when encapsulated, are hidden from external view.

4 1. Introduction

When an external observer views an encapsulated object, only the exterior in-
terface is visible; the internal details are invisible and cannot be accessed. Thus,
data which is encapsulated cannot directly be manipulated and, in particular,
cannot be directly updated. Objects in object-oriented programming languages
contain a local state which is encapsulated; they also have data associated with
them that defines what they are. The implementation of an object should,
ideally, be hidden from view.

Objects tend to be defined in terms of other objects. When a new object or
kind of object is defined, it is defined in terms of those properties that make
it special. Because objects are frequently defined in terms of other objects,
a mechanism is present so that the properties of those objects upon which a
new one depends can be transferred to the new object from the old one. This
mechanism is called inheritance.

According to one interpretation of the object-oriented concept, objects are
defined by descriptions; a description can be used many times to create indi-
vidual objects. The description is expressed in terms of the properties of the
objects which can be created by its application. The way in which inheritance
works for this kind of language is that descriptions are constructed on the basis
of other descriptions. When a new description Dn is created on the basis of
an old one, Do, the properties that were defined in Do become automatically
available to Dn. It is in this sense that it is said that Dn inherits from Do. Thus,
any object created using Dn will automatically have the properties defined in
Do. It should be noted that Do can generate objects of its own; they will have
the properties defined by Do and by inheritance from the descriptions used to
define Do. Objects produced using Do do not have any properties defined in
Dn. The reason for this is that Do is an ancestor of Dn; inheritance works by
obtaining properties from ancestors.

Inheritance enables programmers to reuse the definitions of previously de-
fined structures. This clearly reduces the amount of work required in producing
programs.

Next, we turn to polymorphism. The word “polymorphism” literally means
“having many forms”. In programming languages, polymorphism is most often
taken to be that property of procedures by which they can accept and/or return
values of more than one type. For example, a procedure which takes a single
argument is said to be polymorphic if it can accept actual parameters of more
than one type. If P is such a procedure and τ1 and τ2 are two types, P is
polymorphic if and only if P can be called with an argument of type τ1:

P (x : τ1)

and can also be called with an argument of type τ2:

P (x : τ2)

1.2 Essential Properties of Objects 5

Similarly, given a function f and two return types, ρ1 and ρ2, f is polymorphic
if and only if f can be called with an argument of type τ1, returning a value of
type ρ1:

f : τ1 → ρ1

and can also be called with an actual parameter of type τ2, returning a value
of type ρ2:

f : τ2 → ρ2

Polymorphism is extended to assignment to variables in the following way. Let
v be a variable and let o1 be of type τ1 and o2 be of type τ2. Then assignment to
v is polymorphic if and only if the following assignments are both well-typed:

v := o1

v := o2

Polymorphism is pervasive in object-oriented languages. Given the inheri-
tance relation outlined above, if there are two objects, o1 and o2 such that o1

inherits from (is defined in terms of) o2, then o2 can replace o1 and the program
remains well-typed. This implies, in particular, that:

– o2 can be assigned to a variable that can be assigned to o1;

– o2 can be an actual parameter bound to a formal parameter that can also be
bound to o1;

– o2 can be returned by a function that can also return o1.

If objects are considered to be types, the direct correspondence can be seen.
Polymorphism has some profound implications for programming languages. In
object-oriented languages, polymorphism interacts strongly with inheritance, as
has just been indicated. Sometimes polymorphism arises because it is necessary
to redefine an operation so that it is particularised to a particular object or set
of objects. We will spend considerable time below on polymorphism.

Finally, there is dynamic binding. Dynamic binding means that the opera-
tion that is executed when objects are requested to perform an operation is the
operation associated with the object itself and not with one of its ancestors. In
some languages (C++ is one), when an object is assigned to a variable, passed
as a parameter, returned as a result, referenced by a pointer, the operation
that is performed need not be the one defined for the object that is actually
assigned, passed, returned, pointed to, etc., but the operation associated with
one of the object’s ancestors.

This comes about because of the following. In C++, if one kind of object,
o1, is defined in terms of another, o2, the two object kinds are identified with
types. If o2 is the ancestor of o1, then it is considered to be a supertype of o1.

6 1. Introduction

Because an object of a type can always be assigned to a variable whose type is
a supertype of that type, it is possible to assign o1 to the same variables as o2.
C++ considers only the static type of the variables (the pointers, parameters,
return types, etc.). If a variable is declared to be of a supertype, when a subtype
is assigned to that variable, only those operations associated with the supertype
can be performed. There is a way of making C++ perform dynamic binding,
but the scheme described in this paragraph is the default (it is called static
binding).

Dynamic binding is another property that has profound implications for
object-oriented languages. At a practical level, it means that the operations
that are performed are always those associated with the object asked to perform
them (unless it must inherit the operation). At a more theoretical level, dynamic
binding interacts with inheritance and with the type structure of a language.

1.3 Objects and Messages

In Smalltalk, the active components, the methods associated with classes (the
operations), were activated by means of messages. Message passing is a central
concept in object-oriented programming languages. When one object wants to
activate a method in another object, it sends the other object a message. The
message specifies which method is to be executed and provides the parameters
required to activate the method.

When a message is sent from one object to another, the receiver examines
the method specification. This specification, called the selector, is used to look
up the appropriate method in a method table. Each object has a method table
which associates selectors with methods. When the appropriate method has
been determined, its code is executed and a result might be returned to the
sender of the message.

The use of selectors provides a level of indirection between messages and the
code (or method body) which implements them. It also provides a mechanism
for determining which methods are provided by which objects. If a selector is
not present as a key in the method table of the receiving object, the object can
inherit the method from one of its parent objects. This means that a request
is made to the objects superclass to return the appropriate method; should the
method not be located there, the superclass of the superclass is consulted. This
process continues until either the method is located and returned for execution,
or there are no more classes and an error is signalled.

Selectors separate the names by which methods are known from the code
which implements them. Thus, a method might be known by more than one

1.4 Pure and Impure Languages 7

name (selector) in a program; as long as the selectors mentioned in messages
map to the correct code so that the correct behaviour is elicited from the
system.

The Smalltalk implementation of message passing, like those in SELF [24],
Omega [10] and the language proposed by Malenfant et al. [52], are based upon
actually passing messages between objects. These languages are all sequential
(SELF is implemented as threads, but the treatment described here is gen-
eral) and messages do not need to be enqueued. Instead, a message is directly
passed to the receiver object. The receiver object then picks up the message (as
a pointer, typically) and executes. Because of the synchronisation constraint
inherent in sequential languages, this direct message handling technique be-
comes possible; were the languages to support asynchronous interactions, some
form of queueing would be required.

In many languages, message passing is replaced by procedure call. In object-
oriented languages using procedure calls, methods are implemented as proce-
dures. Because messages are directly handled, the selector can be replaced by
the name of the method in the receiver and the parameters supplied in the
message are replaced by procedure parameters. Instead of indexing a method
table, the procedure call approach, in its simplest form, involves the direct ex-
ecution of the method named by the selector; the parameters which are to be
passed to the method are typically passed on the runtime stack as parameters
to the procedure implementing the method. The procedure call can be seen as
an optimisation of the message technique; the runtime stack is used instead
of creating a new message in the heap and then filling the various slots of the
message. The interpretation of message passing as procedure call removes the
indirection of the selector-based message passing technique and method tables
can be compiled down into a simpler form.

1.4 Pure and Impure Languages

A distinction is often made between so-called pure and impure object-oriented
languages. Pure object-oriented languages contain only constructs that directly
relate to object orientation. Every procedure must be written as a method and
associated with an object. Programs in pure languages are always expressed in
terms of object-oriented constructs. Impure languages (which are sometimes
called hybrid languages), on the other hand, are typically composed of an
object-oriented component and a procedural one. Impure languages allow the
programmer to write object-oriented programs or procedural ones.

8 1. Introduction

Smalltalk [34], Java [47], Eiffel [53] and Sather [60, 61] are examples of pure
object-oriented languages. C++ [75, 74], CLOS [65] and Ada [8] are examples
of impure languages.

Impure languages are very often designed by taking a procedural program-
ming language and adding a set of constructs that support object-oriented
programming. This was the case, for example, in the transition from the 1983
Ada standard [12] to the Ada95 [8] version. In addition to general modifications
to the language, object-oriented extensions were added so that Ada95 became
an impure language. C++ is another example of such an embedding (its history
is described in [73]). Essentially, it was felt that the C language was in need of
modification and improvement, so object-oriented features were added, as were
features intended to increase the type safety of C and features for the represen-
tation of constants. The language grew in popularity and the object-oriented
features were increased and/or improved. For example, single inheritance in
the first version became multiple inheritance in the second; protected class
components were similarly introduced, as was the distinction between public,
protected and private superclasses. Object-oriented exceptions were introduced
at the same time. Other languages, including Pascal and COBOL, have been
enriched with object-oriented extensions.

The trend towards object-orientation has also been reflected in the develop-
ment of languages like Oberon [56]. There is an object-oriented component in
Oberon, but it does not look much like that in C++ or Smalltalk. Oberon relies
upon a module system to provide modularity and concepts such as abstract
classes and object-specific methods are also lacking; Oberon employs special
handler procedures and record inclusion in its object-oriented component.

A similarly unusual language is represented by JavaScript [32], a language
for programming World-Wide Web browsers. JavaScript is an interpreted rel-
ative of C but includes a form of prototype mechanism. Prototype objects can
be defined and copied in JavaScript; a variety of operations can also be per-
formed on the objects which it supports. The objects supported by JavaScript
are, however, really just associative tables, a fact which does not reduce the
utility of the language.

Pure object-oriented languages, however, are typically designed from scratch
or based on designs for other object-oriented languages. Smalltalk was partially
based upon Simula67 [31], but introduced many new features. Beta [43] is also
based on Simula67, but clearly displays the wisdom of many years exposure
to object-oriented programming. Sather [60, 61] is based upon Eiffel [53], a
language which was designed from scratch to be an effective and reliable tool
for software engineering.

Given the fact that there are languages which emphasise procedural aspects
more than object-oriented ones and that there are languages at the opposite

1.5 Mixed-Paradigm Languages 9

end of the object-orientation spectrum, as well as those in the middle of the two
extremes, it seems fairer to think of object-orientation as being a continuous
property. Typically, object-orientation is thought of as being an all or nothing
property. Inspection of the literature shows that this black or white view is
inappropriate. It is far better, when comparing the claims for object orientation
made of two languages, to consider the degree to which they are object oriented.
Smalltalk and Java, at the one end, exhibit a high degree of object orientation,
while Oberon, at the other, exhibits a relatively low degree.

As we move from one end of the object-orientation spectrum to the other,
properties of the languages will change. For example, in impure languages,
procedure call tends to replace message passing; inheritance might be replaced
by some other concept and encapsulation might be supported by some other
mechanism (e.g., packages in Ada). At the other end, the properties of object-
oriented languages that are taken as being definitional are present in clearer
forms.

1.5 Mixed-Paradigm Languages

It is possible, although currently very rare, for the object-oriented component
to be embedded into a functional, logic or constraint-based context. Languages
which are based upon such a mixture are often called mixed-paradigm lan-
guages. We will have nothing to say about these languages in this book.

1.6 Organisation of this Book

Chapters 2 to 7 are concerned with the class-based paradigm. This paradigm
is the one most frequently encountered in everyday programming. Languages
such as Smalltalk, C++, Java and Ada are based upon the concepts of class
and instance.

Chapter 2 introduces the basics of class-based programming. The primary
concepts—encapsulation, inheritance, polymorphism and dynamic binding—
are all introduced. The concepts of class and instance are presented, explained
and related to the concept of the type. This connection is often to be found
in languages of this kind, notably C++, Java, Ada, CLOS and Dylan. The
discussion of the concept of instance includes consideration of what instances
are and what they contain. As part of this, the concept of the method is also
introduced. The idea that slots can have different levels of visibility is also

10 1. Introduction

introduced and discussed, as are the alternative ways in which slots can be
accessed. Class and instances variables are also considered.

In Chapter 2, the concept of inheritance in the form of single, linear, or sim-
ple inheritance is also considered and some of the implications are drawn. The
simpler form of inheritance is the best starting point for discussing inheritance;
inheritance can be viewed in many ways and it interacts with other concepts,
sometimes in a very subtle fashion. Next, the concept of the abstract class is
introduced. Its use is summarised and is related to inheritance. Iterators and
part objects complete the chapter.

Next, in Chapter 3, an alternative, though rarer, but still important ap-
proach is discussed. This alternative is the prototype-based approach as ex-
emplified by the SELF, Omega and Kevo languages. In these languages, the
concepts of copying and modifying objects are employed. This typically leads
to languages and systems that support exploratory programming and persis-
tent storage, and to languages that lack strong type disciplines. However, the
Omega language shows extremely well that strong types can easily co-exist
with prototypes. Unfortunately, at the time of writing, prototype-based lan-
guages have not received the attention that class-based ones have. Delegation
is introduced and explained. The Actor family of languages is also presented
briefly.

Inheritance is the topic covered in Chapter 4. The chapter begins with the
single inheritance concept introduced in Chapter 2 and examines its limitata-
tions. The relationship between inheritance and subtyping is discussed; this
is a natural topic, given the frequent interpretation of classes as types. Code
sharing and interface inheritance are considered, followed by consideration of
how to invoke methods defined in classes higher in the inheritance structure.
The controversial topic of multiple inheritance is then introduced, motivated
and explained. A number of popular interpretations of multiple inheritance are
considered:

– graph inheritance;

– tree inheritance;

– linearised inheritance;

– mixin inheritance.

The interactions between multiple inheritance and object component access
is considered in detail. Some alternatives to multiple inheritance are examined.
Inheritance is then contrasted with delegation and aggregation, the primary
competing approaches to inheritance.

Chapter 5 deals with methods. Methods implement the operations asso-
ciated with objects. In the class-based approach, they are usually defined as

1.6 Organisation of this Book 11

part of the definition of classes. The relationship between objects and methods
is considered first, and then the role of constructor functions. The concept of
higher-order functions and their relationship to methods is next considered;
many languages, in particular the so-called “pure” languages like Eiffel and
Java, do not permit higher-order functions, but permit other techniques. In
the section on higher-order methods, we consider those techniques and dis-
cuss the flexible approach based on blocks adopted in Smalltalk and SELF;
this approach simplifies the definition of the language because many control
structures can be implemented directly as blocks. Next, the interaction be-
tween methods and inheritance is considered again, and the method-combining
structures in FLAVORS and CLOS are explained. Static and dynamic method
binding constitute the next topic. Dynamic method binding is often considered
the binding strategy most appropriate to object-oriented programming. The
differences between the two binding techniques are discussed, as are their im-
plications. The implementations of dynamic binding used in Smalltalk and in
C++ are discussed.

There follow two chapters on the concept of type as it relates to class-
based languages. The first is concerned with matters such as the overloading
and redefinition of methods. Inheritance, particularly in connection with the
classes-as-types interpretation, interacts with typing; in particular, it implies
the operation called downcasting which we discuss in some detail. Next, we
consider the problem of determining the type of an object. Some authors, for
example Stroustrup [73], argue that runtime type tagging is to be avoided, in
which case the user must either abandon hope or introduce their own scheme
for tagging. I argue that runtime type determination mechanisms that do not
require the introduction of type functions and predicates are to be preferred.

It is frequently stated that polymorphism is a central property of any object-
oriented programming language. Overloading, downcasting and redefinition are
characteristics of object-oriented polymorphism. These issues are next consid-
ered, as is the concept of a generic object. The concept of the root class is
introduced and discussed as a way of introducing a simple and powerful form
of polymorphism. The concept of variance, often considered to be one of the
more complex and obscure in object-oriented programming languages, is dis-
cussed and, I hope, demystified.

The second chapter on types is concerned with a ragbag of issues, including:

– types and implementations;

– classes and type operations.

As part of the discussion, the idea that a class can have multiple implementa-
tions is explored in a little detail.

12 1. Introduction

The penultimate chapter, Chapter 8, is a description of C#, a new language
developed for Microsoft. The form of this chapter is slightly different because
those features of the language that relate to object orientation are described and
compared with features in C++ and Java, the languages that it most closely
resembles. C# introduces some new concepts into object-oriented languages
and refines some others. The object of the chapter is to show how the new
language has developed from older concepts, a task made easier because C#’s
design is fairly conservative.

The final chapter (Chapter 9) contains a brief description of some of the
features of BeCecil, a language defined as a core upon which extensions can be
defined. BeCecil, as its name suggests, is related to Cecil, and both languages
are based on the concepts of prototypes and multi-methods. BeCecil is included
because it is the product of reductionist thinking.

EXERCISES

1.1. List the three properties that characterise object-oriented program-
ming languages.

1.2. Name the two main approaches to object-oriented programming lan-
guage design.

1.3. Explain the relationship between objects, methods and messages.

1.4. Explain how pure and impure object-oriented languages differ.

2
Class Fundamentals

2.1 Introduction

The very first object-oriented programming languages, Simula67 [9, 31] and
Smalltalk [34], were based on the concepts of class and instance. The majority
of the object-oriented languages now in use are based upon these two concepts.
Indeed, we can correctly refer to these languages as promoting class-based
programming, a style of program construction based upon the idea that the
programmer first defines a collection of classes and instantiates those classes
when required. Classes represent the primary concepts employed in the program
and instances represent particular exemplars of those concepts. The concept of
the class is very similar to that of the abstract data type, and the two are
frequently identified; when constructing a class-based program, the program-
mer identifies complex (abstract) data types and uses them to structure the
program. The identification of classes with types implies that class-based lan-
guages have extensible type systems or, when dynamically typed like Smalltalk
or Lisp, possess extensible structuring methods.

Many, if not the majority of object-oriented languages now in use are based
upon the class concept. This chapter will discuss the concepts of class and
instance and will explain how they are related. In addition, it will address the
issue of inheritance, a relationship between classes, which gives this style of pro-
gramming its considerable power. As will be seen, inheritance is a somewhat
controversial issue, and I will adopt the simplest interpretation in order to pro-
vide the reader with sufficient background to continue with the remainder of the

14 2. Class Fundamentals

book. The aim of this chapter is to introduce the reader to many of the major
concepts of object-oriented languages and so, in addition to the class/instance
difference, other issues of importance will be considered, in particular:

– the correspondence between classes and abstract data types;

– information hiding (encapsulation);

– the internal structure of classes;

– restricting what is visible to descendent classes.

Many of the concepts discussed at a relatively superficial level in this chapter
will be considered in greater detail in subsequent chapters.

Object-oriented programming languages, or, more correctly, class-based lan-
guages, are claimed to have the following exceptional properties:

– encapsulation;

– inheritance;

– polymorphism; and

– dynamic binding.

The class, in class-based programming, is the key to these claims. The con-
cept of the class is that of a device which collects together data and procedural
elements into an entity which presents a well-defined interface to its users. As
such, it hides the details of its implementation. This is encapsulation. In fact,
because classes can be said to act as templates, they can be instantiated to
create objects (the objects in this kind of programming are the instances of
classes, not classes themselves); the internal structure of objects is invisible to
the computational processes which manipulate them. An interface for the class
is defined; the interface makes visible, or exposes, part of the class’s structure.

If encapsulation were the entire story, classes would not be very interesting
because they would be little more than instantiable modules. What makes them
more than modules is the inheritance relation which holds between classes. In-
heritance makes families out of individual classes. When one class inherits from
another, they share some of their internal structure. If class C inherits from
class S, C is said to be a subclass of S, while S is said to be the superclass of
C. In such a case, the data and operations defined for S will be accessible to
C. This means that there is a kind of code sharing between the sub- and su-
perclass. A superclass can have more than one subclass. Each subclass inherits
components from the superclass. Inheritance allows a class to be extended by
the addition of new internal elements, some of which will be made visible to
users as its interface.

2.1 Introduction 15

Next, there is polymorphism. This term means literally “many formed” and
refers to the property of object-oriented languages that they permit routines to
have more than one type of assignment. In languages like Pascal, it is required
that a routine be associated with a unique set of input specifications; if the
routine is a function, there must be a unique return type associated with it.
A polymorphic routine can be associated with many input and output specifi-
cations. Class-based programming makes this possible by attaching procedural
elements, called methods, to class definitions and allows methods with the same
name to be present in different classes. This is a technical subject which is dealt
with in more detail in Chapter 5, below.

Finally, there is dynamic binding. This is an approach to the invocation of
the operations defined in a class. Dynamic binding basically means that the op-
eration that is actually called is the one associated with the object itself and not
with the type of the variable or pointer which refers to it. In essence, dynamic
binding means that the operation the programmer expects to be performed is
the one that is actually performed. Thus, when an object of one kind is passed
into a procedure, the parameter to which it is bound might not reflect the full
set of properties of the object that is being passed. Within the procedure, an
operation might be called. This operation will be common to both the declared
kind of object and the actual one. However, there might be differences between
the formal and the actual parameter in terms of the details of the operation
that is to be called. If the operation associated with the formal parameter is
called, anomalous behaviour might be exhibited by the procedure. It is also
counter-intuitive for an object to perform an operation that is not associated
with it. Dynamic dispatch can only be completely understood when inheritance
and polymorphism have been comprehended.

The next section (Section 2.2) introduces the concept of the class. The class
as a form of template, a form of structure and a form of type definition are all
introduced. Classes are also related to abstract data types. Next, the concept of
the instance is presented (Section 2.3). Instances in class-based programming
are the objects with which programs actually deal; they do not manipulate
classes, but, instead, the instances of classes. The components of objects (in-
stances), their slots and methods are defined and motivated (Section 2.4); the
ways in which they can be accessed are then discussed (Section 2.5). If slots
and methods can be accessed, they must be visible. However, not all slots and
not all methods should be visible to everyone—this would violate the assump-
tions about encapsulation made about classes-so we discuss how visibility and
accessibility can be controlled (Section 2.6). The process of instance creation is
discussed in Section 2.7. Following on from this consideration of instances, in-
heritance is discussed in Section 2.8. The form of inheritance which is discussed
is the simple form, often called single inheritance for it imposes the constraint

16 2. Class Fundamentals

that each class is permitted only to have one superclass. Section 2.9 introduces
the concepts of abstract classes and methods. Iterators (a high-level method
for writing loops that does not violate encapsulation) are the subject of Section
2.10. Part objects, an issue raised by the Beta language [43, 50, 51], are the
subject of Section 2.11.

2.2 Classes

In this section, we will consider the concept of the class. The class is central to
class-based programming languages and serves as a mechanism for defining sets
of objects, together with operations to manipulate them. Objects are instances
of a concept; a class defines a concept of some kind. For example, a class can
represent a linked list, a window on a display, a file, a page of text or a piece
of furniture. Classes act as encapsulating mechanisms that are instantiated to
create instances; this is the way in which classes resemble templates. Classes
collect the definition of data and operations. The data definition states what the
data elements local to an instance will be (some languages allow more than this
to be specified, but we leave such issues until later); the operation definitions
specify the operations that can be performed on the data elements defined for
the class. The operations also define (part of) an interface for manipulating the
entities the class represents. A consequence of viewing classes as templates is
that the process of instantiation implies the sharing of code among the instances
of a class.

It is essential first to define classes so that they can be instantiated. In class-
based programming, it is usual to manipulate the results of class instantiation,
not classes themselves. Although the approach we take in this section is based
upon the relationship between classes and types, the reader should keep in
mind the idea that a class is a kind of template.

In class-based programming, the concept of the class is associated with
a number of different, but not always competing, interpretations. The term
“class” can variously be interpreted as:

– a set of objects;

– a program structure or module;

– a factory-like entity which creates objects; and

– a data type.

The first interpretation associates the term “class” with a collection of re-
lated entities. The entities have properties or behaviours in common and can

2.2 Classes 17

be regarded as being of the same class. Thus, a class defines properties or
operations (or both) that are common to a collection of objects. The class is
a construct that defines collections of objects in terms of the properties they
must have. The objects thus described are manipulated by programs and exist
at runtime only.

The second interpretation considers a class to be a kind of module. Modules
encapsulate types, data (variables) and operations (procedures and functions);
data defined within a module can remain invisible outside the module and an
explicit operation must be performed for parts of the module’s internals to be
made visible to the outside world. Modules are usually defined and included
within a program; modules import and export other modules. An imported
module provides data types, variables and routines to the importing module;
an exporting module provides types, variables and routines to modules which
import it. In some languages, modules are defined and included in a program; in
others, they can be instantiated (Ada packages are an example of instantiable
modules). If a module can be instantiated, many copies of the module exist at
runtime within a single program.

Classes are similar to modules in that they export some entities (often
operations) and they can be made to import others. Modules hide their internal
details and so do classes; in both cases, for a component to be made visible
to the outside world, an explicit operation must be performed. This view of
the class considers it to be an instantiable module and considers objects to be
instances of the same modular object. Just as every instance of an instantiable
module has a similar structure, so too do the instances of a class.

The third interpretation is the factory object concept. This is an interesting
interpretation because it emphasises the dynamic nature of object-oriented
languages. Here, the class is seen as a device that can create objects. The
objects created by a class all have the same properties and can perform the
same operations. The definition of the class contains a description of what the
objects produced by the class will look like and how they will behave. When
an object of a particular kind is required in a program, the relevant factory is
used to produce it. Different factories produce different objects.

The factory object concept is quite interesting because it opens the way to
describing objects in a parametric fashion. That is, the factory object can allow
the creation process to accept parameters when it creates a new object. The
parameters define the details of the object that is produced; this leads to a more
flexible view of how objects are created and what they are. The other interpre-
tations of the term “class” all imply that objects will have the same structure
and behaviour; the factory interpretation implies that objects produced by the
same class (or falling within the same class) can have slightly different specifi-
cations. Factory objects are used fairly extensively in the Java library.

18 2. Class Fundamentals

Finally, the concept of the class is often identified with the concept of an
abstract, or encapsulated type [49]. Classes in many languages, for example
C++, Java, Ada and Dylan, are considered to be types. Languages treating
classes as types allow the programmer to declare variables with a type that is
a class; in some languages, and in some contexts, such variable declarations,
when executed, cause the class to be instantiated (see Section 2.3 below).

Thus, in one of these languages, given a class, C, and a variable, V, the
following is legal:

v : C

This declares the variable, V, to be of type C. In the particular case of a class-
based language that identifies types and classes, this declaration states that
variable V has type C. We consider languages permitting such declarations be-
cause they are frequently encountered.

If a variable can be declared to be of a class type (a type which is defined
by a class), what is a class?

A class defines a collection (a set in practical terms) of entities with the
same internal structure and which behave in the same way; in addition, a
class defines an external appearance (interface) for the objects that fall within
the class. The class defines what is common to the elements of the collection.
The objects are all composed of the same data elements and have the same
behaviour. We can equally think of a class as defining a set of properties and
a set of operations. Given these definitions, similarities between classes and
abstract data types can be seen.

An abstract data type is sometimes called an encapsulated data type because
the details of its implementation are hidden from the user. Similarly, once
a class has been defined, its external interface is all that should be used in
determining the properties of the class. The external interface of a class is
almost always represented by a collection of operations over that class and some
of its properties. The external interface tells the user of the visible properties
of the class and what operations are defined over it. The internal details of a
class can consist of properties and operations, but they are not required for
the user to be able to understand what the class represents and how it can be
treated. The process of hiding the internal details (the implementation details)
of a class is called encapsulation.

We could, for example, define a complex number type. We can define it in
terms of two variables of floating point type. These numeric variables represent
the real and the imaginary components of the number. In addition, we would
define operations over complex numbers to represent such things as addition,
multiplication, and so on. We might also want to include two operations, one to
convert the representation to polar co–ordinates and one to convert from polar

2.2 Classes 19

co–ordinates. Naturally, the latter will be the identity if we opt to represent
complex numbers as pairs of reals; if we had chosen to represent them as a
radius and an angle, the conversion operation to polar co–ordinates would be
the identity. That we would include both conversion operations is an important
point, the reason for which is that we want to hide the way in which we choose
to represent complex numbers. In a similar fashion, we could represent a stack
type as an encapsulated or abstract data type (or as a class). When building a
stack type, we must provide operations to push and pop elements, test whether
the stack is empty and so on. We have to decide how we want to represent
the structure to hold the stacks elements. We can decide to represent this as
a (singly) linked list or as a vector. If we know that the stack will have a
maximum number of elements we might choose the vector representation; if
we have no such knowledge, the list is probably safer. Once the representation
decision has been made, we can then define the details of the operations we
have defined for our type. We also need to add one other operation to the set
of operations that we have defined for the class: we need to define an operation
for creating stacks for us (this is called a constructor function).

In both cases, we do not want the user to know how we represented complex
numbers or stacks. The internal details do not matter to them. As long as
the class behaves in the correct ways, and as long as we can construct an
object of the appropriate type, the details of how it works internally should be
of no interest to us. (Consider, for example, how floating point numbers are
represented. In some cases, the IEEE standard is adopted, in others it is not.
As far as the user is concerned, as long as the operations over floating point
numbers work as expected, their internal representation is of no relevance.)

We have described exactly what it is to be a class in a class-based language
that considers classes to be types. The internal details of a class are hidden
from the user (principle of encapsulation) and an interface, typically expressed
in terms of a constructor and a set of operations is available for use. The con-
structor and operations defined by the class constitute most of the information
available to the user in order to determine what a class represents and how it
should operate (they need this information in order to use the class).

The process of definition of a class amounts to the identification of a new
concept having a particular behaviour. For example, if we defined a highway
simulation, we would want a class (type) to represent an automobile. This is
because automobiles represent an important class of road user. Equally, we
might want a class to represent trucks of various kinds as well as buses. We
would define classes for these kinds of vehicle because the vehicle types are
important and distinct concepts in such a simulation. Now, each of these classes
have properties and behaviours in common and they have properties that differ
from each other. For example, most vehicles have an engine size, and each

20 2. Class Fundamentals

vehicle has a current speed property; however, automobiles tend to carry fewer
than four passengers while buses can carry fifty or sixty and trucks (depending
upon the behaviour of the driver!) tend only to carry a driver. Engine size,
current speed, number of passengers, and number of wheels, are all properties
of the vehicle class. An operation could be defined to compute the vehicle’s
current position on the road for any one of these classes (in fact, we would
define it in a parent class and define the other classes in terms of that parent—
this involves inheritance, a process which we will describe below in Section 2.8).
Not all of the details of each type of vehicle would be available for inspection;
we might want to encode the make of the vehicle as an integer or we could
have some complex structure to represent the destination or the cargo that it
carries.

In the automobile simulation, we define different kinds of class to define
the different types of vehicle. Each class represents properties of the thing it
represents and it also represents operations that can be performed on that
object. An operation to set the vehicles speed might be one such operation;
another operation would return the licence plate number, while another would
return the year of manufacture. The properties and operations defined for each
class are appropriate for the object the class is intended to represent. As we
saw in the case of complex numbers, classes can denote conceptual entities as
well as physical ones.

In order to construct a realistic simulation of a highway, we would want lots
of instances of the automobile class. This is extremely important.

2.3 Instances

When we declare an integer variable in a program, we are creating a variable to
contain an instance of the type integer. There can be many integer variables in
a program, each with a different name and each containing a different instance
of the integer type. What these variables have in common is that they hold
instances of that type.

We noted in the last section that if we wanted to build a highway simulation,
we would need to define classes for each of the kinds of vehicle we wanted to
include, and, most importantly, we would need to define lots of instances of the
classes that represent vehicles. The instances of the classes are similar to the
integer values we described in the previous paragraph. Just as we manipulate
instances of the integer type, we manipulate, at runtime, instances of classes.
A class itself serves as the definition for a collection of instances, but it cannot
usually be manipulated at runtime. In class-based programming languages like

2.3 Instances 21

Figure 2.1 A class and its instances.

Java and Eiffel, it is the instances of classes that are manipulated at runtime.
Thus, in the highway simulation, instances of the various automobile classes
must be created in order to run the program.

In class-based programming, the term “object” properly refers to the in-
stances of classes. However, because so much effort is expended in defining the
classes in the first place, the term “object” is often used (incorrectly) to re-
fer to class definitions. A class is a definition of what is common to all of its
instances. The instances of a class are objects which have an identity and a
lifetime within the execution of the program. Because of the way classes are
defined, instances almost always have variables and constants defined within
them that allow different values to be stored at runtime. Thus, two instances
can differ in the values that are stored within them. It is also very common
for the variables and constants to be accessed and updated at runtime. A class
and (some of) its instances is depicted in Figure 2.1.

The update of variables is how the state of an object-oriented program is
affected at runtime. The state of an object-oriented program at runtime is or-
ganised in terms of the instances, each instance encapsulating part of the state.
The state represented by one instance is usually distinct from that represented
by another (there are exceptions, but they tend to be rare), so the global (pro-
gram) state can be thought of as being distributed among the various instances
of the classes used by the program.

Instances of classes can be bound to variables and, in some languages, they
can be pointed to. Instances of classes are passed as arguments to procedures
and are returned as results from procedures. It is worth emphasising that in-
stances can be bound, pointed to and passed in and out of procedures. Instances
are, because of this, first-class citizens. Classes serve only as definitions; it is
not possible to bind a class to a variable, nor is it possible to point to a class
or pass one to a procedure.

Above, when we considered abstract data types, we stated that the opera-
tions defined over that type are considered part of the abstract types definition,

22 2. Class Fundamentals

and that, in an identical fashion, operations (called “methods”) are defined in
classes. Methods are used to manipulate the internal state of instances and
to perform transformations, as well as doing the usual things that procedural
entities do. Methods are applied to instances and methods return instances as
results. Methods do not operate on classes because classes are not, in class-
based programming, first-class citizens.

The creation and manipulation of instances forms the dynamic structure
of a class-based object-oriented programming language. The static structure
is determined by the definitions of classes and the relationships which obtain
between class definitions (inheritance and part-of relations play a particularly
significant role in defining static structure).

With these basic distinctions out of the way, we can move to a more detailed
examination of the concepts of class-based programming languages.

2.4 Slots and Methods

The definition of a class contains the definition of slots. Some slots hold data,
while others refer to pieces of procedural code that implement the operations
defined for the class. The slots that are defined by the class (and their types),
determine what the class’s instances will represent. The operations that are
defined also serve to define the class. For the reason that classes and instances
encapsulate data and operations, it is necessary for the operations to be part
of the definition of the class. A graphical representation is shown in Figure 2.2.

Data slots hold the data that is local to the instances of a class. The
instances are, in the class-based approach, the objects that are handled at

Figure 2.2 Slots and methods.

2.5 Slot Access 23

runtime; space is actually allocated for slots in instances, not in classes. The
data in their slots is part of the way in which they represent things. Sometimes
the values in data slots can be changed by programs, while some slots are con-
stants. If we defined a class to represent a stack, for example, instances of the
class would each contain a slot holding the implementation of the stack (either
a vector or a linked list) and might hold a slot pointing to the top of the stack.
This data is hidden inside the instances of the stack class, but is made available
to the operations defined over the stack class (push, pop, top, empty?, etc).

Although most object-oriented languages, and almost all class-based lan-
guages, consider methods to be separate from the slots in an instance, we will
continue to speak as if methods were held in special slots. In class-based lan-
guages, methods are defined as part of the class. Instances have access to the
methods that are defined in their class because of the definitional mechanism.
What is really the case is that methods are shared between instances. However,
it is natural to think of methods as being part of instances, so we will strictly
abuse the terminology in the way stated above. We will, therefore, refer to
“method slots” and “data slots”, where the former refers to slots (notionally)
holding methods, and the latter refers to slots holding data and references to
instances of classes.

It is important for the reader to remember that instances are the objects
that are really manipulated at runtime. Therefore, when we talk of accessing
a class’s slots (as we do in the next section), we are, in fact, talking about
accessing the slots present in an instance of that class. When we talk of a
slot in a class being constant or variable, we will be referring to the runtime
operations that are defined in the class for that slot.

2.5 Slot Access

Slots containing methods are usually considered to be read-only. It only makes
real sense to call a method or to pass it as a parameter; it does not usually make
much sense, in an object-oriented language, to re-define a method at runtime.
One reason for this is that inheritance (see below, Section 2.8) allows methods
to be re-defined in a structured and controlled fashion. Matters are completely
different when data slots are considered.

Data slots can represent variable or constant information. That is, a slot can
be read-only or read-write. Clearly, if a slot is intended to be read-only, it makes
no sense to try to update its value. Some languages allow the programmer to
mark a slot as being constant; others make the distinction in other ways. One
particularly important way is based upon how slots are accessed.

24 2. Class Fundamentals

It seems natural to access a slot in an instance as if it were a variable.
In other words, it makes some sense to allow access to data slots in a direct
fashion. Thus, when we write:

i.s

to access the slot s in instance i, we are in fact writing a direct access to the
slot. When we write:

i.s := exp

we are directly updating the slot s in instance i. In both cases, the internal
structure of the instance is directly accessed and, perhaps, modified. We have
a way to get inside an instance.

When compiled, the slot is an offset to a pointer or a fixed address in the
store. When defining slots, the distinction between a constant and a variable
slot can be made. In Java, for example, a slot can be marked as final, making
it a constant; otherwise, the slot is treated like a variable; C++ allows slots to
be defined as constant.

The direct approach to a slot is simple. It has faults. For example, it allows
direct access to the contents of an instance, thus violating the encapsulation
(visibility) barrier that a class should maintain (instances are automatically
encapsulated by means of the creation process which reveals no internal details
to the user). Direct access to the slots of a class reveals the names of slots
(revelation of methods appears less of a problem, though, but see below).

A second approach, one adopted by CLOS and Dylan, inter alia, is based
upon the idea that slot access should be through the intermediary of reader
and writer functions. In this scheme, when a data slot is defined, additional
functions are defined. If it is intended that values in the slot be readable, a
reader function is defined. Similarly, if it is intended that it should be possible
to update the slots contents, a writer function is defined. In some languages,
if a slot is to be readable and writable, the reader and writer functions can be
combined in a single function called an accessor function. When defined, these
functions are globally accessible (if CLOS permitted nested class definitions,
the visibility of these functions would be restricted to the class in which the
nested class is defined). For example:

slot aslot,

reader: read_aslot;

writer: write_aslot;

defines a slot which is called aslot. This slot has a reader function (called
read aslot) and a writer function (called write aslot). The slot is both read-
able and writable. If we wanted the slot to be read-only (a constant slot), we

2.6 Visibility and Accessibility 25

would just define a reader function (and also equip the slot with an initial
value).

If we want to read the value in the slot, we would write:

V := i.read_aslot()

and to update the slot, we would write something like:

i.write_aslot(v)

(Dylan allows the writer function to be written as i.aslot := v.)
The justification of the function-based approach to slot access is that it

de-couples access and update from naming. If a reader function is defined for
a slot, the name of the slot inside the class matters not one iota; what matters
is the name given to the reader function. In the above example, it does not
matter at all what we define the slot’s name to be. We decided to call the slot
aslot, but we could call it slot1, Bill, Joe or dwiddle (it is good practice
for slots to have intelligible names that describe their role). Slot names must
be unique within a class. The name is used internally by the class in order to
allocate slots. What matters to the outside world is that the access functions
are defined and have meaningful mnemonic names.

The use of access and updater functions to read and write slots separates the
names visible outside a classs definition from those that are visible inside (and
to subclasses). This provides valuable additional support for encapsulation in
languages supporting these features.

2.6 Visibility and Accessibility

So far, we have assumed that all the slots in a class are visible to the user.
In particular, we tacitly assumed that all slots were available to subclasses as
part of their explicit definition. The definition of a class is its interface. One
assumption about classes is that they will make visible all the most important
aspects of their interface. This implies not only that their slots remain constant,
but also that all of the “important” slots be visible and accessible to subclasses
as well as to users (quite what “important” means must be left undefined for
it relates to the intension of a class, not its extension).

Some early languages, Smalltalk and LOOPS, for example, as well as some
more recent ones such as SELF, do not make any provision for hiding slots. All
slots in these languages are on equal footing and are all equally visible. Slots
containing methods, typically, must be accessible to all parts of a program
and to all subclasses of the one in which they are defined for the reason that
they must be called or used in the definition of other methods. When the

26 2. Class Fundamentals

language is not of the pure object-oriented variety, it is necessary for methods
to be visible so that they can be called by procedures and functions that are
not attached to any class. Given this basis, data slots are sometimes left as
universally accessible. In an interpreted language like Smalltalk or LOOPS,
data slots are visible because, during exploratory programming, programmers
do not often know which slots to hide.

Under certain circumstances, it is not desirable to allow all slots to be vis-
ible to every program component and to the user. The restriction in visibility
of slots is a natural part of interface design. It is also a natural part of good
design. For example, two methods in a class might call the same operation, the
common operation being another method defined in that same class. This com-
mon operation might not be used elsewhere, so there is little point in making
it visible or accessible to everything. An example of such a method is one that
checks the index to a dynamic array or vector; this method is needed inside the
class by all methods that access the array or vector—it is not required (and
probably makes no sense) outside the class. Another example, this time of a
data slot, is the reference counter on an object stored in a reference-counted
heap. Only the operations to reference and dereference the object need access
the reference counter slot (variable), so hiding the counter in the class appears
to promote a better interface.

Figure 2.3 Slots visible and invisible outside a class.

Before continuing, I need to introduce some terminology. A class represents
a program region in which definitions of slots are made. These slots are visible
within the class itself and, should they not be restricted, they are also visible
outside their defining class (see Figure 2.3). I prefer to use the term scope to
refer to the region of a program text in which a variable or function (procedure)
can be accessed; this corresponds to the standard interpretation of the term

2.6 Visibility and Accessibility 27

in the λ-calculus and in block-structured languages. Given this distinction, a
slot has a scope within a method defined in the same class (it is global to the
method), but is visible within the definitions at the same level of the class.
Outside the class, the slot can be visible or not; it cannot be in scope until its
name is used in any independent procedure or function. A slot can be visible
to another class.

I prefer to use this terminology in order to separate procedural elements
from classes. A class is, typically, a restricted, flat name space, whereas a pro-
cedure tends to involve nesting of declarations. Furthermore, a variable in a
procedure definition is in scope (and hence visible) only within the procedure
in which it is defined and within all procedures defined within that procedure
(unless the variable is hidden by the definition of another variable with the
same name); a global variable is in scope in all procedures defined within the
global scope and in all procedures which are defined within these procedures.
A scoped variable is visible only in a “downward” sense. A slot in a class, un-
less hidden, is visible within its defining class and within all other classes and
procedures unless over-ridden by another (local) definition. In this sense, slots
have a two-dimensional region within which they are accessible or visible to
other entities.

An obvious distinction to make is to define some slots as visible and others as
hidden. CLOS adopts the approach that all slots are accessible; if programmers
want to hide some, they may write code to make this distinction, the code being
included at runtime in the class-processing code.

Even if it is decided to make some slots hidden and some visible, there are
questions that must be asked. In both cases, the question arises as to who can
see the slot. If a slot is visible, to whom is it visible? To all objects? If a slot is
hidden, from whom is it hidden? A visible slot might be visible to everything;
that is, it is exported from the class’s interface and can be accessed by anything
(provided it is not over-ridden). A hidden slot might be visible only to those
entities within the class in which it is defined. Such a slot could not be accessed
outside of its defining class, nor could it be accessed in any classes derived by
specialisation from that defining class.

The C++ and Java approach to visibility is one that allows a relatively fine
control over the visibility of slots. They introduce distinctions between public,
protected and private slots. It is possible to make methods private, as well as
data slots. Furthermore, in C++, it is possible to have a superclass that is
private (the default is a public superclass). The distinction between the three
kinds of visibility are as follows.

A public slot (data or method) is visible to all entities within the class in
which it is defined, as well as in all other classes. For C++, we must add the
possibility that the slot is visible in all routines external to any class and in

28 2. Class Fundamentals

Figure 2.4 Public slot visibility and access.

which the identifier of the slot has not been over-ridden by a local definition
(e.g., as in Figure 2.4). For C++, it is also necessary to add the constraint that
visibility is restricted to the file in which the slot is defined. For Java, there are
no procedures or other constructs external to classes and Java classes exist in
name spaces, not files; these facts have the implication that the visibility rule
for Java amounts to the first sentence of this paragraph. To an approximation,
a public data slot can be referenced, accessed and updated anywhere in the
program; a public method slot can be referenced and called anywhere in the
program.

A private slot (data or method) is only visible within the class in which it
is defined. A private slot can be referenced (and called), accessed and updated
(if it is a data slot) by methods local to the class in which the slot is defined; it
can be stored in any container object defined in the class. Private slots are also
visible in the sense of variable scope in all classes that are defined locally to the
class in which the slot is defined. Private slots cannot be seen in classes that are
external to the one in which they are defined. When a C++ class declares its

2.6 Visibility and Accessibility 29

superclass to be private, all public and protected slots of the superclass become
private slots of the subclass; the default is for superclasses to be public, in which
case their public slots become public slots of the subclass.

There is a third distinction made in these languages. Some slots can be
declared to be protected. A protected slot is visible within the class in which it
is defined (and in all locally defined classes) and it is visible within all subclasses
(and their locally defined classes) of its defining class. It is not visible anywhere
else. A protected data slot is one that can be referenced, accessed or updated
within its defining class and within all of the subclasses of its defining class. A
protected method slot is one that can be referenced and called within the class
in which it is defined (and its locally defined classes) and within all subclasses
(and their locally defined classes) of its defining class.

A completely different scheme is adopted by Eiffel. Here, a distinction is
made between those classes in which particular slots can be inherited. Slots
in Eiffel are called features; the term refers to data and to method slots. The
visibility of features can be stated either in an export clause or in the definition
of the feature in the defining class. An export clause takes the form of a list of
feature references annotated with a visibility constraint. For example:

export

{ANY} f, g;

{NONE} x;

{D} h

is such a feature list. Each line defines the visibility of the variables that appear
to the right of the entity named between braces. With the exception of the entity
named NONE, each entity mentioned between the braces is a class. The export
list says that f and g are visible to class ANY and to all of its descendants.
It also says that feature h is visible to class D and to all of its descendants.
Therefore, f and g are visible to all classes because ANY is the root of all classes
in Eiffel (it is a pre-defined class). The feature named x, though, is visible to
no other classes; the specification of NONE makes the feature private to the
class in which it is defined.

Eiffel also allows visibility specifications to be made on feature definitions:

feature {A}

i : INTEGER

This states that i is visible to class A and all of its descendants.
It should be clear that there are interactions between inheritance and visibil-

ity. The standard rule applies for inheritance: unless over-ridden in a subclass,
all visible definitions in the superclass are carried over into the subclass. For
example (this example is taken from [53], p. 99), if we define class B as:

30 2. Class Fundamentals

class B

feature

x, y: INTEGER

feature {A}

f, g, h: INTEGER;

end

and class C as:

class C inherit B

export

{D} x;

{ANY} f;

{NONE} g;

end

end

The features of the subclass, C, have the following status. Feature y is visible
to all classes. Feature h is visible to class A and all of its subclasses. In class
C, these two features retain the same status they had in class B. Meanwhile,
in C, x is now available to D and all of its subclasses, and f is visible in all
classes, while g is now private to C. This means that the status of x, f and g

has changed. It is important to remember that the status has changed with
respect to C, not to B; in B, their status is as defined in that class. When we
have an instance of B, the features defined in B have the status that is defined
there; when we have an instance of class C, the features that are defined in
that class have the status defined there. Consequently, we can access the g in
instances of B from any class we care, but we cannot access the g in instances
of C. If we attempt to access x from an object that is not an instance of D, we
can do it without error if the x is in an instance of B, but access in an instance
of C will be blocked (it will cause a compile-time error). It can be seen that
Eiffel allows classes to inherit features which are public and then to make them
wholly private, but on a selective basis, not, as in C++, on a per-class basis.

A second issue, related to visibility, is how a slot is allocated. There are two
main choices:

– the slot is allocated in each instance of the class;

– the slot is allocated once and is shared by all instances of the class.

This distinction is made in Smalltalk, LOOPS, CLOS, C++ and Java; the slot
might be hidden or public, but can be allocated in these ways. A third way is
for there to be no allocation and a per-program specific mechanism is supplied
by the programmer; this mechanism is called a virtual slot in Dylan. The Dylan
virtual slot is included so that other mechanisms can provide what look like

2.7 Instance Creation 31

slots: a read-only slot might be implemented as an input side of a stream or
pipe, for example.

The distinction made by Smalltalk, LOOPS, CLOS, C++ and Java, as well
as Dylan, is between the way in which a slot is allocated, no matter what
its visibility constraints are. The distinction, using Smalltalk terminology, is
between class and instance variables. A class variable is instantiated once and
is shared by all instances of a class. The instances are able to update the
variable’s value, as well as reading it. An instance variable is allocated for each
instance of the class; it is not shared between instances. In C++ and Java,
the default is for slots to be allocated on a per-instance basis. Hence, in these
languages, instance variables are the default. If a slot is to be defined once for
all instances, it must be allocated as a static (own) variable in these languages;
such slots can be hidden or public.

Class variables require runtime storage to be allocated with each class.
They also allow instances to update their values. A class variable is a common
runtime variable whose scope can be restricted.

2.7 Instance Creation

A class is of little use unless it can be instantiated. Instantiation is necessary
in order to produce the objects which, at runtime, are the basis of computa-
tion. Instantiation allows independent entities of a given type to be created.
Slight differences can exist between instances of the same class. Two instances
of a class representing the application of a binary arithmetic operator to its
arguments can differ in the following ways:

– one might represent a multiplication, the other an addition;

– one might represent a multiplication of a variable by a constant, the other
an addition of two variables.

If we have instances of the binary arithmetic operator application class that
both represent multiplications, they can differ in the following sense:

– one might be the multiplication of two variables, the other the multiplication
of a variable by a scalar constant.

Instances can differ slightly or to a considerable extent. Imagine that we are
building an object-oriented program to process data about families (say for a
census or for a food store). People can differ in their height, for example, by
considerable amounts; preferences can vary wildly. One person’s favourite food
might be beef steak, while another might prefer lemon sorbet to anything else

32 2. Class Fundamentals

in the world. However, people all have in common a set of basic properties.
A class defining People would capture these commonalities, but it would also
leave room to represent the differences between people.

In a program, instances of a class all share a common structure and a
common set of properties. In addition, they all share the same set of methods.
By setting the values in one instance in one way, we can make it differ from all
other instances of that same class: this is the essence of parameterisation, an
extremely important property of the concept of an instance.

One way in which instances can be created, a way in which the structure
of the class is respected, is to arrange for there to be a “master object”. The
master object resembles a class in the sense that it defines the structure of its
instances and defines the methods which apply to its instances. It defines the
slots and methods that are to form the objects. When an instance of the master
object is required, the master object is simply copied. The way in which the
copy is performed depends upon what is required. There are two choices:

– shallow copy;

– deep copy.

Under shallow copy, the container is copied and its contents are shared; under
deep copy, the container is copied and the contents are copied and assigned to
the correct place in the copied master object. Since methods are usually imple-
mented as pointers either to special method-representing or method-handling
objects or to the entry point of the method code, the decision as to whether a
deep or shallow copy is performed is irrelevant. I focus, therefore, on data slots.

When a master object is shallow copied, only the container structure is
replicated. The contents of the container object are shared between all copies.
Thus, when a change is made to the master object, say a new value is assigned
to a data slot, that change will be seen by all copies of the master objects.
An object can be copied so that it exactly replicates the structure and content
of its master object; the object (instance) can then be updated to introduce
differences. If, on the other hand, the master object is deep copied, the container
and the contents are copied. When a change is made to the master object, the
copies are unaffected and do not see the change.

The master object approach underpins object-oriented programming based
on prototypes (see Chapter 3 for more details). It also underpins another ap-
proach to object-oriented programming, one that is far less commonly encoun-
tered. This rare approach considers objects to be, in effect, instantiable modules
which present well-defined interfaces. The instantiable module approach suffers
from inflexibility and is not often encountered in the mainstream. Prototype-
based programming, on the other hand, is an exciting and relatively poorly
explored area.

2.7 Instance Creation 33

The most common approach to object-oriented programming by far is
that which makes a distinction between classes and instances. The instance-
producing process is called instantiation. There are various approaches to in-
stantiation, depending upon the particularities of the language. Languages like
C++ can instantiate objects on the runtime stack or in the heap and the lan-
guage provides constructs for instantiating classes that reflects where they are
to be created. In other languages, particularly those in the LISP and Smalltalk
families, instance creation is performed by a single, unified mechanism. What-
ever the decisions made about where instances are created, the instantiation
mechanism works by using the class as a structural template which is used to
allocate the slots and methods that are to appear in the instance. In most class-
based languages, instances have an internal structure that reflects the structure
of their class. Thus, the process of creating an instance remains fundamentally
the same despite constraints on where instances are allocated.

In C++, given that C is a class and v a variable, a legal way to create an
instance of C is:

C v;

In a procedure, the instance would be allocated on the stack. The variable v

would be taken to be a variable in the ordinary way, so if v1 is another variable
of type C, the assignment v := v1 is quite legal and should (in C++ there are
factors that can prevent this) perform the assignment of v1’s instance of C to
v. Note that the variable v is not a pointer to an instance; the entire instance
is allocated on the stack when the block containing the declaration is entered.
If we wanted a pointer to an instance of C, we would have to write:

C *v;

V := new C;

where new is an instance-creating primitive which returns a pointer to a heap-
allocated instance.

It is all very well to create instances of classes, but without the ability to
set at least some of their slots to specific values, instantiation is a blunted tool.
Thus, again in C++, we could define a stack-allocated instance of C by:

C v(99, ‘‘foo’’);

which instantiates v to be an instance of C, but, this time, two of v’s slots are
initialised to the integer 99 and to the string “foo”. In C++, as in many other
languages, it is possible to parameterise the declaration of a variable so that
values can be passed into the instance to initialise some or all of its slots.

In CLOS and related languages, there is an equal control over the creation of
instances, and values can be passed to instances for slot initialisation. However,
unlike many languages, in CLOS and other LISP-related languages (Dylan

34 2. Class Fundamentals

being one), the language provides an instance-creation function. This function
typically takes, as its first parameter, the name of the class to be instantiated.
It also takes a variable number of parameters, each one supplying a value to
be used to instantiate a slot.

In CLOS and related languages, all instances are allocated in the heap, so
a single instance-creating mechanism can be supplied; in languages like C++,
Java and Eiffel which allow instances to be created on the local stack or in the
heap, a mechanism for each storage area must be provided. Each operator must
allow for the creation of parameterised instances.

2.8 Inheritance

2.8.1 Introduction

Class-based programming is powerful. It encapsulates data and procedures into
units which can then be instantiated. Class-based programming is very often
associated with inheritance or the ability of one class to extend another. Inher-
itance refers to the fact that the definition of a new class can assume or rely
upon the existence of another definition; alternatively, inheritance makes a pre-
viously defined structure available for incorporation in a new one. Alternatively,
if one class inherits from another, the inheriting class specialises a class which
is more general. The definition of classes via inheritance involves the construc-
tion of definitions that are increasingly specialised. A final interpretation of the
inheritance relation is that it enables subtypes to be produced given a defini-
tion of a supertype. The first definition given above, a highly pragmatic one,
implies that inheritance is a method for code sharing. The second definition
implies a logical relationship between classes (specialisation/generalisation),
while the last implies a type-based account. All three of these interpretations
are acceptable, but the code sharing one should not be mixed with the others.

In terms of the organisation of classes, inheritance induces an organisation
upon them. This organisation is extremely important to class-based program-
ming and it forms the subject of this section. Here, we will tend to think in
terms of specialisation/generalisation and sub/super types.

The reader will probably have encountered the concept of multiple inheri-
tance. This is a complex and controversial subject. Consequently, I focus here
on single inheritance, the form found in Smalltalk, Java, FLAVORS, LOOPS,
Beta and Sather; in a later chapter (Chapter 4), I will consider multiple inher-
itance.

2.8 Inheritance 35

2.8.2 Definition of Inheritance

The term “inheritance” as used above is to be taken in the familiar sense in
which property or wealth is inherited, or in which genes are inherited. It is the
process by which one generation hands down something to a later generation.
In object-oriented terms, it means the handing down of properties from a more
general structure to a less general one. This is directly analogous to the ordinary
language interpretation in which someone hands on something to someone else
(usually a relative). In the case of object-oriented programming, it is the class
that hands something to another class; that something is its slots. The process
of inheritance is part of the definition of classes in class-based programming.
One often defines one class as a subclass of another. Alternatively, we can
say that the newly defined class (the subclass) is obtained by the process of
specialisation of its superclass: one class is specialised in order to create a
subclass.

The reader should note that, by superclass, we mean both the immediate
superclass and all the ancestors of a given class. The converse of a superclass is
a subclass. I will also refer to the immediate superclass as the direct superclass
(the converse being the direct subclass). The ancestors of a class is the set
of all of its superclasses (the superclass, superclass of the superclass, etc.);
sometimes I will assume that the ancestors are ordered in a natural fashion.
When considering a class as a type-defining construct, I will refer to the subclass
as a subtype; conversely, a subtype has a supertype which is its superclass. I
will use the terms subclass and superclass when there is no confusion and will
be more precise when I believe it to be necessary.

What this means is that when one class is defined as a subclass of another
class, the subclass is able to treat the slots and methods of its superclass as
if they belonged to it. The subclass is applicable to fewer situations than the
superclass, so the concept of specialisation is introduced. When we define classes
depending upon each other in this way, we say that there is an inheritance
relation between classes.

For example, imagine that we have a basic class, say Data, that represents
any data type whatsoever, then we can define a Stack class to implement a push-
down stack whose elements are instances of class Data. We might specialise
Data so that we could represent integers, reals, double-precision reals, and so
on. When we do this, we produce specialisations of class Data. Now consider the
Stack class itself. We might find that double-precision floating point numbers
are of particular importance to some application, and we want to have the
Stack hold them. We could stick with using Data, but the more specific type
DoubleFloat is more suited to the current application; we could then construct
a new version of Stack but which now only holds instances of DoubleFloat

36 2. Class Fundamentals

(we would do this by changing the types of the methods so that they input
and output DoubleFloats and we would change the element type for the stack
structures so that it was DoubleFloat). Inside the new stack class, we use the
operations defined for Stack, but wrap specialising code for them.

Figure 2.5 The inheritance relation.

Another example of specialisation is the construction of labelled nodes for
a program that manipulates graphs. Initially, it makes sense to define a class
to represent the nodes in the graph. A node class might define such things as
its degree and pointers to each of the nodes to which it could be connected. It
might have operations to link and unlink to other nodes and, perhaps, print
some information about itself. Next, we come to the labelled node. This can
be represented by an instance of the node class, but with an extra slot to hold
the label. To do this, we would define a new class, say LabelledNode, which

2.8 Inheritance 37

was identical to the node class, but differs in its inclusion of the label. The
operations defined for the basic node class would be inherited by LabelledNode,
as would the pointers to connected nodes. The LabelledNode class would add
its own slot for the label and methods to set the label and to print it on the
screen. The original node class serves as the basis for all other kinds of node
one would like to include in a graph; for example, rather than labelling nodes,
one might want to colour them in order to find partitions, so a ColouredNode
class could be defined as a subclass or specialisation of the basic node class.
The ColouredNode class would inherit the same operations and slots as would
LabelledNode; it would differ in the presence of a slot to represent the node’s
current colour and methods to set, retrieve and display the node’s colour.

Figure 2.6 C1’s slots.

In the figure (Fig. 2.5), it can be seen that there are two classes, C1 and C2.
The upper class, C1 is the superclass of class C2; C2 is, therefore, the subclass
of C1. In other words, C2 is a specialisation of C1. Class C1 has slots s11 and
s12, as well as methods m11, m12 and m13. Class C2 has slots s21, s22 and s23,
as well as methods m21 and m22. The slots defined in each class are local to it.
Equally, the methods are local to the class in which they are defined. However,
C1 and C2 are related by means of inheritance. This means that C2 was defined
as a specialisation of C1 and on the assumption that C2 would inherit from C1.

Class C2 inherits slots s11 and s12, as well as methods m11, m12 and m13.
What inheritance means is that the slots and methods are treated as if they
were defined locally to C2. When an instance of C2 is created, it will look as
if it has slots s11, s12, s21, s22 and s23, and methods m11, m12, m13, m21 and
m22. An instance of C1 will look, therefore, as shown in Figure 2.6.

38 2. Class Fundamentals

Figure 2.7 C2’s slots.

It looks just as in the previous figure. An instance of C2 will look, thanks
to inheritance, as shown in Figure 2.7.

Inheritance allows the programmer to rely upon what is already provided by
a class and to extend (specialise) it to fit the more constrained circumstances
of their implementation. Inheritance relates classes in a variety of ways. If we
consider a class to be a definition, derivation of subclasses implies the formation
of definitions that are more restrictive and, hence, applicable to fewer situations.

Assume an inheritance structure like that in Figure 2.8.
The topmost class is the root of the inheritance graph. Each leaf node is a

class that is a subclass of the root. Each leaf is related to the root by the subclass
or specialisation relationship; leaf classes apply to fewer cases than does the
root. Alternatively, the root is a more general concept. The general concept
class at the root of the tree provides operations and data that is common to all
of the leaf nodes. The leaf nodes inherit these common slots and methods in
order to represent their concept. (This can also be considered as code sharing.)
Thus, whenever we encounter an instance of one of these leaf classes, it will
behave as if it contained the slots of the root class and will exhibit behaviours
as if it had the root class’s methods defined for it. In addition, it will behave

2.8 Inheritance 39

Figure 2.8 A tree and its root.

in such a way that an observer can confirm that it contains those slots and
methods defined locally for it.

Figure 2.9 An inheritance graph (tree).

The organisation of classes into trees is referred to as an inheritance tree
or inheritance graph. This is shown in Figurfe 2.9.

When viewed from a class, it can only “see” a linear sequence of classes
which stretches between it and the root class; this sequence has endpoints and
is linearly ordered, so is a chain. We refer to the sequence of classes between a

40 2. Class Fundamentals

Figure 2.10 An inheritance chain.

given class and its root class as its inheritance chain (sometimes this is called,
colloquially, the superchain). A superchain is shown in Figure 2.10.

At present, we are only considering single or simple inheritance. Under
single inheritance, every class has at most one superclass. Since the inheritance
relation is transitive, a given class inherits from all of the classes in its inheri-
tance chain. Furthermore, since inheritance is transitive, if C1 is a subclass of
C2 and C2 is a subclass of C3, C1 is also a subclass of C3.

It is also worth introducing a little more terminology which will be of value
throughout discussions of inheritance. Let us assume we have a class C. This
class has subclasses C11 and C12. Let us assume that C11 has subclasses C21,
C22 and C23, and that C22 has subclass C31. For ease of visualisation, this is
depicted in Figure 2.11.

We say that C11 and C12 are direct subclasses of C. We also say that C21,
C22, C23 and C31 are indirect subclasses of C. C21 is a direct subclass of C11

but an indirect subclass of C. Similarly, when considering instances of a class,
we say that the instances of C are direct instances of it, but an instance of C11

or an instance of C21 is an indirect instance of C. The entire tree is shown in
Figure 2.11.

2.9 Abstract Classes

It is not always desirable to create instances of a class. Sometimes, it is better
to create a class but forbid its instantiation. Such a class is referred to as being

2.9 Abstract Classes 41

Figure 2.11 The inheritance tree rooted at C.

abstract, while classes for which it makes sense to create instances are referred
to as being concrete. Abstract classes serve as place-holders in the inheritance
chain. (We will see, when we consider multiple inheritance, that abstract classes
and their near-relative, mixins, play an important part in class derivation.)

Abstract classes are defined to occupy a location in an inheritance chain.
That is, an abstract class can refine its superclass and can have subclasses. It
is worth noting that the restriction on instances has no bearing on whether
a class is permitted to have subclasses. Some languages permit the explicit
definition of classes which cannot be specialised; for example, the String class
in Java.lang cannot be specialised and is marked as a final class. It would
make no sense for an abstract class to be marked as final in a Java program.

Abstract classes very often occur at a branch-point in an inheritance hier-
archy. Branch–points occur when a class has many subclasses. This means that
the whole inheritance graph is a rooted, acyclic graph, or tree (for each class,
its inheritance graph is a chain, hence our terminology). At the branch-point,
it might be necessary to define some data or method slots that will be inherited
by its subclasses.

For example, in an abstract syntax tree, we might want to define a class to
represent expressions. This class would be an abstract one because we do not
normally instantiate expressions directly. Instead, we define other expression
classes such as constant, variable, unary operator application, binary operator
application, and so on. In a compiler or interpreter, we might want to anno-
tate each expression with its type (or expected type). We might also want to
label the expressions in some way, perhaps as some kind of colouring algorithm
relating to register use. The expression type and labelling should be defined
in the expression type and inherited by the subtypes (constant, variable, etc.).

42 2. Class Fundamentals

Figure 2.12 The inheritance graph for expressions.

However, it makes no sense to instantiate the class representing all expressions;
it does make sense for it to be abstract. The inheritance graph for expressions
looks like Figure 2.12.

It makes sense for constants to be instantiated, for variables to be instanti-
ated, and for the various operator application classes to be instantiated. How-
ever, it makes no sense to instantiate something which just represents a type
and a label: it corresponds to nothing in a programming language (or, at least,
the language being defined, we assume).

If we were to define a collection of classes that represent various foodstuffs,
we might want to define a class called FoodStuff. This class would be the root
of the inheritance tree containing the definitions of classes for different kinds
of food (cheese, milk, etc.). A property that all purchased foods have is that
they have a price. It might make sense to define the FoodStuff class with a
slot called price. However, just as we do not normally encounter expressions,
we do not normally encounter foodstuffs in the abstract. The FoodStuff class
is intended to represent the general class of foods, not a particular food. It
should, therefore, be defined as an abstract class.

An abstract class can also be defined because one or more of its operations
cannot be specified for that class. This again indicates that the class will be the
root of a tree of class definitions. For example, if we want to define a collection
of classes to represent logical constants, logic variables, functors (functional
terms) and relations as part of a unification pattern matcher, we need to define
a class called Term to stand as the root class for constants, variables and
functors. The inheritance tree is as follows.

The Term class is the root of the tree. There are branches for all the main
subtypes of Term: Const, Var, FunTerm. It will be seen that Const has sub-
classes: IntConst, SymConst, and RealConst. These subclasses represent inte-

2.9 Abstract Classes 43

Figure 2.13 Types representing unifiable terms.

ger, symbolic and real constants. The Const class serves only to root these
individual constant types, so it is an abstract class like Term.

It can also be seen that there is a subclass, SignedFunTerm, of FunTerm;
this is intended to represent functors that are assigned a truth-value. This is
the representation for predicates and relations in this package.

The Term class declares that there is a method called unify. The unify
method performs the pattern-matching action on subterms (it is a so-called
two-way matching). In other words, the unify method must be defined for each
of the subclasses (Const, Var, FunTerm and SignedFunTerm). It is not possible
to define unification for Terms, but it is possible to define it for the various
subclasses, so each subclass should provide an appropriate implementation of
the unify method. The Term method contains no implementation for unify, just
its declaration. A subclass that does not provide such a definition will be, itself,
an abstract class. For this reason, the Const class can provide no definition for
unify and it is, therefore, an abstract class. The subclasses of Const, IntConst,
SymConst and RealConst each provide an implementation of unify, so they are
concrete classes. The Var class contains a definition of unify, so, like FunTerm
and SignedFunTerm, which also define their own versions of the method, it is
a concrete class. The tree for unifiable terms is shown in Figure 2.13.

Some languages, Java and Dylan, for example, require abstract classes to
be explicitly marked. In Java, the Term class is defined as:

public abstract class Term{

public abstract Bindings unify(Term t, Bindings bdgs);

} // end class

The annotation abstract appears in the line which introduces the name of the
class (and its superclass, were this relevant). The class definition contains the
signature of a method called unify which has particular inputs and outputs

44 2. Class Fundamentals

(they do not concern us here). The method is marked as being abstract and has
no implementation. What is meant is that the implementation(s) come later in
the definitions of subclasses of this; the implementations are defined on a per-
class basis and will differ because of the different structures in the subclasses.
Java insists that, whenever a method is marked abstract so, too, is the class in
which it is defined.

In Dylan, a similar marking scheme is employed. Eiffel similarly imposes a
distinction between concrete and abstract classes by means of the deferred

annotation which means that the implementation of a feature (slot) is deferred
until a later class. As in Java and Dylan, an entire class can be marked as
deferred, or one or more of its features can bear such a marking.

C++ provides a mechanism, but is somewhat clumsier. In C++, the pro-
grammer can define a method as being virtual void. This means that the
method is a virtual method, but its implementation is deferred to the class
subclasses. An example of the syntax here is:

virtual int add1(int y) = 0

The =0 annotation is the part stating that the definition has been deferred (this
is the void part of virtual void). Whenever the C++ compiler sees a class
with at least one virtual void method, it treats creation of instances of that
class as an error. There is no class annotation for an abstract class.

It should be noted that an abstract class can still have a constructor. The
constructor can be called in the normal way by constructors of the abstract
class’s subclasses. However, it is not permitted for the abstract class’s con-
structor to be called directly.

2.10 Iterators

Encapsulation is the process of hiding inessential details from consumers or
users. In object-oriented programming, it is often necessary to define classes
which hold instances of other classes. These classes are called container classes.
Example container classes are:

– vector;

– array;

– singly linked list;

– FIFO queue;

– LIFO stack;

2.10 Iterators 45

– set;

– binary tree;

– random access file;

and so on. These container classes all have the common property that they are
data structures that hold (contain) data.

In conventional procedural programming, if data is held in an array, it
is standard to write a loop of some description to perform search or update
operations. If the array is represented by a container class, a mechanism must be
provided to access the elements of the array so that the encapsulation provided
by its class is not violated. Similarly, if it is necessary to find an element in a
list and that list is represented by a class, there must be some way to access
the elements of the list without violating the encapsulation provided by the
list class. If the encapsulation provided by these classes were violated, there
would be no point in using classes at all. Encapsulation allows the programmer
to treat something like an instance of a container class as a single entity. If
encapsulation is violated, the contents become visible and there is little point
in pretending that they constitute a single entity (for the reason that more
than one entity can be seen and, presumably, be manipulated).

The solution is to employ iterators. An iterator is an entity that gives ac-
cess to the contents of a container object without violating encapsulation con-
straints. Access to the contents is granted on a one-at-a-time basis in order.
The order can be storage order (as in lists and queues), or some arbitrary order
(as in array indices) or according to some ordering relation (as in an ordered
binary tree). The iterator is a construct which provides an interface that, when
called, yields either the next element in the container or some value denoting
the fact that there are no more elements to examine.

Programming with iterators is a high-level, abstract approach to iteration
in programs. Iterators hide the details of access to and update of the elements
of a container class.

The simplest and safest iterators are those which permit read-only access
to the contents of an instance of a container class. In this case, when called, the
iterator yields a reference to the next element in the container instance. The
reference allows the client code to read the data represented by the element; if
the element is a complex object, it might be updated by client code. However,
the element cannot be replaced in its containing object. Thus, if the container
is an array and the iterator yields the third element in the array, the client
code cannot update the array so that a new third element is stored there. An
iterator of this kind is not permitted to update the container, even though the
element that has been extracted might be updated.

46 2. Class Fundamentals

The following code fragment shows how an iterator might appear in code:

cont_iter := new cont_iterator();

x := cont_iter.next();

while x /= NONE do

...

s(x);

...

x := cont_iter.next();

end;

In this example, cont iter is the name of the iterator. It is created on
the first line by instantiation of the cont iterator class, an iterator class
defined to iterate over some container class, cont. Successive elements from
the container are assigned to x. The loop terminates when x is bound to some
empty value (here, NONE). In the middle of the loop, there is s(x) an operation
on x, the current element from the container. The next element of the container
is obtained at the bottom of the loop.

It is possible to define iterators which can update the container in various
ways. Updates to container classes include insertion, deletion and replacement
of elements. Iterators which permit this kind of destructive operation are called
robust iterators. The problem with robust iterators is that they must preserve
the overall structure of the container class as well as any constraints that the
container imposes on its data. Robust iterators are relatively hard to implement
because they risk exposing the internal structure of the container class.

There are many ways to implement iterators, among which the following
are often encountered:

– classes;

– blocks;

– functions;

– cursors.

Here, the first three approaches are considered.
The first approach, one based on classes, is employed in C++. An iterator is

usually defined as an independent class that can be instantiated separately from
the container class to which it refers. The iterator class must define a method
that produces successive elements of the container upon which it operates. The
problem of encapsulation needs to be solved because, as an independent class,
the iterator can only gain access to the container class’s public components.

The answer in C++ is to introduce the concept of the friend. If one class,
F , is annotated as being the friend of another class, C, class F is permitted

2.10 Iterators 47

to access and update the private and protected components of C as well as
C’s public components. Once a class is marked as a friend of another class, it
can directly perform access and updates; encapsulation is violated, but, it is
argued, only on a limited basis.

If an iterator is to be written for an array class in C++, the iterator is
marked as a friend class of the array. The iterator will contain a private
integer slot to hold the index of the next element in the array to be returned.
A method is defined in the iterator which will yield the next element in the
array; the method returns NULL if the index runs off the end of the array. This
can be written as:

class array_inter{

public:

array_inter (aclass aclss) {

array_len = aclss.size;

next_element = 0;

}

T *next(){ // method yielding elements of array

T *elem = NULL;

if (next_element < array_len)

elem = &aclass.elements[next_element++];

return elem;

} // end next

private:

int next _element;

int array_len;

};

In the example, aclass is the class representing the array over which itera-
tion is to be performed. The constructor of array iter the iterator class, takes
a (reference to) the array class and extracts its size and stores it in the private
local variable array len (this is done to ensure faster access). The index into
the array, next element, is initialised to zero.

The next method is the one that returns successive elements of the array.
The type of the elements in the array is assumed to be T and the next method
deals with pointers to the elements, not the elements themselves. The method
tests to see if it has gone off the end of the array. If there have been more calls to
next than there are elements in the array, NULL is returned; otherwise, a pointer
to the next element in the array is returned and the index is incremented ready
for the next call.

48 2. Class Fundamentals

The friend mechanism is highly dangerous. It requires considerable control
in order to avoid exposing the details of classes. Control over code must be
exercised and maintained, particularly on large projects where some program-
mers might require a set of classes to be friends to some others and where other
programmers do not want such exposure. The friend mechanism is, in any case,
an open invitation to disaster.

An alternative would be to define the iterator class as a nested class which
is then exported. However, this poses problems for it either exposes some of
the internal structure of the container or it requires a method to instantiate it
and then call the iterator’s element-yielding method. It might also prove to be
difficult to have more than one iterator active in the same container class at
the same time.

The block method is available in languages like Smalltalk which permit the
definition of first-class block expressions (see Chapter 5, Section 5.4.3). In the
block approach, the iterator is defined as a block inside the container class over
which iteration is to be performed. The variables local to the block are used
to retain local state information (e.g., indices into arrays or pointers into lists)
in a fashion identical to that in the above class-based example. Because the
block is defined in the local context of the class, it can access private state
information. Because a block is able to retain information over a period of time
(blocks are closures), once defined, it can function outside the class in which it
is defined and can be invoked more than once, retaining its state information
between invocations.

Functions in most programming languages are not treated as first-class en-
tities. Thus, they are not implemented as closures. In order to employ a C
routine as an iterator, it is necessary to store information between invocations;
the most natural approach is to use static variables to hold this information.
In languages without static or own variables, functions cannot easily be used
to implement iterators. In the LISP family of languages, closures can easily
be created, so function-based iterators can be defined. In languages providing
higher-order functions as first-class entities, a function-based iterator can be
created by a method defined in the container class.

The Sather language [60, 61] adopts an approach based on the class-based
method, but which looks like the function-based one. An iterator in Sather is
defined as a function (method). When compiled, iterator functions generate
objects which have a public method that is called to yield the elements of the
container. Sather iterators are defined as part of the definition of container
classes; there is no textual separation for the iterator definition looks like an-
other method in the container class. This approach also avoids encapsulation
problems because the iterator is defined as a component of the class to which

2.11 Part Objects 49

it applies. As a component of the class, it has direct access to everything in
that class and in that class’s ancestors.

2.11 Part Objects

The Beta language [43, 50, 51] employs single inheritance, so its semantics
under inheritance are easily and simply defined. Beta is based upon the concept
of a pattern, patterns can be created to represent operations as well as classes;
this provides considerable uniformity to the structure of the language. The
language is based upon the concept of the class and its instances, so much
of its semantics is of a familiar kind. It also includes the virtual concept (as
in Simula67) and block structure (as in Algol6O and its descendants). I will
consider these aspects of the language in turn. I consider them here for, as we
will see, they relate both to inheritance and the incorporation of slots in classes.

In Beta, the virtual concept is generalised somewhat and is available for
any pattern entity, not just procedures (methods). Patterns in Beta are com-
posed of attributes (slots, in other words) which can be filled with objects that
instantiate other patterns (classes). A Beta attribute (slot) can be declared as
being virtual. This implies that the properties of the virtual pattern are not all
known and that full specification may occur at a later time. A virtual pattern
is, therefore, the partial specification of a class or procedural entity. A virtual
pattern can be construed as a parameter in the enclosing pattern.

A virtual pattern declaration has the form:

V :< A

(this notation will become familiar when we consider overloading and polymor-
phism and is employed in languages such as Sather). Using this notation, V
is declared as a virtual pattern (class or attribute) with qualifying pattern A.
The pattern V can be bound to a subpattern (subclass) of A. While a pattern
remains unbound, it has a default binding provided by its qualifying pattern.
In more standard terms, V :< A denotes a slot, method or class which has a
type represented by A; however, the specification of the type is incomplete and
can be completed by an entity which is a subclass of A.

A virtual pattern is instantiated by supplying a subclass of its qualifying
pattern as a value. Syntactically, this can be done in two ways:

V : : A1

or:

V :: A1(# . . . #)

50 2. Class Fundamentals

where A1 (# ... #) represents the explicit definition of a pattern (an anony-
mous class in more standard terms). In each case, A1 must be a subpattern
(subclass) of A.

A pattern can be parameterised by more than one virtual pattern. This
means that the pattern can be instantiated in a number of ways. However,
instantiation is not generic in the sense that will be examined in Chapter 6 (or
in the sense of Ada), but requires each parameter to be instantiated by a sub-
pattern (subclass) of each parameter’s qualifying pattern; virtual patterns may
also remain uninstantiated. This provides considerable freedom of definition, all
the more so when it is realised that, because patterns also extend to methods
and other procedural entities, virtual patterns can be used in the definition of
procedural patterns. This inevitably interacts with the inner statements which
are used in the derivation of sub-operations (we will not give details but refer
the reader to [43] which describes extensions to the virtual concept which avoid
these problems).

The second aspect is block structure. Beta allows the inclusion of classes
within classes; in Beta terms, the definition of one pattern within another. This
is similar to the nested class definitions in C++ and Java. Beta also allows
the explicit definition of one pattern within another. In Beta syntax, this is
represented by:

(#

P : (# ... #)

#)

where a pattern is delimited by the (# and #) brackets. Here, we have the
definition of a pattern which contains an attribute called P which is filled by
the pattern which is defined by the (# ... #) pattern. Within the pattern
defined for P, all attributes in the outer pattern are visible. The attributes of
the pattern defined for P are not visible in the containing class. This is block
structure in the Algol sense (it is an implementation of the scope organisation
that some languages derived from the λ-calculus). Block structure, in this sense,
was abandoned in Smalltalk.

Block structure can be employed to construct objects that obey a part-of
organising principle. A complex object with many complex components can
be defined and treated as a single entity. Inner classes (or patterns) define the
components of the whole. Because even explicitly defined patterns in Beta can
be given what amount to superclasses, explicitly defined components can be
permitted to engage in inheritance. (Similar things can be done with C++
and with Java, particularly now that Java permits nested class definitions.)
Inner classes are local to the classes in which they are defined. This makes it
possible to restrict the existence of an object and its description to the object

2.11 Part Objects 51

in which it is defined. It further reduces the number of names in the global
namespace. Nesting of classes also provides a mechanism for packaging related
classes together in such a way that they can be accessed in a controlled fashion,
and it also allows dependencies between them to be expressed and controlled
inside a context which can control and manipulate them.

The formation of prototype objects is one case where block structure is
of positive use. A prototype can be considered to be a class that describes
properties that are related to those of other prototypes. It is an instance of some
kind of class, but one with special properties. A prototype bears a relationship
to other objects of which it is the prototype. There are entities for which it is a
prototype and entities for which it is unrelated. The relation can be described
in terms of the definition of a class. In an early paper on Beta [43], Madsen gives
the following example as an instance of the prototype abstraction problem.

Consider a class called FlightType defining the properties of the descrip-
tions of flights as specified in an airline timetable. Flight �SK273 connects
Copenhagen and Los Angeles and is an example of a flight. This flight is avail-
able on Monday, Wednesday and Friday each week. Its scheduled departure
time is 11.30 a.m. However, during some period of time, the scheduled depar-
ture time might be altered. Flight SK273 should be modelled as an instance of
class FlightType. On the other hand, flight SK273 can be viewed as a prototype
for the actual flights which take place between Copenhagen and Los Angeles.
The real flights are characterised by attributes such as actual departure time,
actual delay, actual flight duration, and so on. Therefore, SK273 can be viewed
as a class with actual flights as its instances and also SK273 is a subclass of
the FlightType class. Thus, we have a class which is an instance of itself (an
example of Russell’s paradox).

Madsen suggests in [43] that block structure can be employed to solve this
problem:

FlightType: class

begin

source, destination: City;

frequency : setOfWeekDay;

departTime : timeOfDay; { departure time}

flightTime: timePeriod;

flight : class

departuredate: date;

actualDepartTime: timeofDay;

actualFlightTime: timePeriod;

departureDelay: procedure ? end;

end class;

end class;

52 2. Class Fundamentals

This defines a class describing the properties of the flight prototypes in the
timetable. The class also includes attributes of the actual instances of this
flight type. It now becomes possible to define SK273 as:

SK273: FlightType

where

source = Copenhagen,

destination = LosAngeles,

frequency = {Mon, Wed, Fri},

departTime = 12.30 a.m.,

flightTime = 11.5hrs;

and a particular flight can be represented by:

myFlight: SK273.flight

where

departureDate = Feb.1.99,

actualDepartTime = 12.45p.m.,

actualFlightTime = 11.25hrs

The where construct is used to bind the slots of an object (in Beta, this would
be done using virtual patterns; in other languages, method calls or assignments
are required).

The example works because the basic class defines a local class to represent
the particulars of an actual flight. This local class is wholly local to the main
class. The FlightType class represents properties of scheduled flights in general
and includes information about a particular flight; information about the actual
flight as instantiated on a particular day can remain incomplete until it is
time to perform the instantiation (i.e., when the relevant information becomes
available). Without block structure, we would have to resort to a number of
ad hoc techniques to represent this information, for example the definition of
additional classes that can be connected to the main class using pointers.

In a similar fashion, the tokens used in the implementation of a grammar
can be defined in terms of a local class. In this case, as in the previous one,
it is possible to refer to instances of local classes. This is seen in the above
example where SK273.flight is referenced in the creation code. This entity is
a class that is local to the FlightType class. Beta allows not only nested classes
to be referenced in such a fashion, but also their attributes. This seemingly
violates the principle of encapsulation, but Beta has separate mechanisms for
distinguishing between implementation and interface.

When part objects (nested, or local, objects) are employed and when they
are permitted to have real instances, it becomes necessary to determine where
they reside. Beta provides a loc parameter that denotes an object that possi-
bly contains the object whose parameter it is. In the above example, the loc

2.11 Part Objects 53

of SK273.flight is SK273. In a more complex example, the location would,
naturally, be far harder to determine. The loc parameter can be subjected to
assignment in order to install a class or instance as the location of an object.
The loc parameter is not, however, used to access the containing object; in-
stead, it is used when objects of different classes must be similarly handled and
when similarity among superclasses is insufficient for all of the classes. One
particular and important reason for this is that the objects are parts of other
class hierarchies.

Madsen considers, in [51], the case of a pattern (class) representing an ad-
dress (this is called Address) and the case of a pattern representing a kitchen
(called, reasonably enough, Kitchen). He makes the observation (Section 7)
that the kitchen slot (holding an instance of Kitchen) represents a real–world
part of a real–world object (a house), but the address part of something like a
Person object represents an aspect of that object. It is an aspect because its
representational role comes when we consider a person as living at some fixed
abode. Another aspect of a person would be Occupation, and another would be
Hobbies. We could fill an occupation slot with an instance of an Occupation

pattern, say Accountant, and we could fill a hobby slot with an instance of a
Hobbies pattern (e.g., WaterSkiing). These two slots will contain instances of
the relevant patterns (classes).

The components of a part object can be accessed via Beta’s renaming con-
struct. In Beta, it is possible to rename any slot in a pattern. Slots that are
directly contained in a pattern are referred to by their name, so if pattern P

directly contains slot s, that slot is referred to simply as s. If, however, P con-
tains a part object in a slot o and the part object contains a slot os, that slot
can be made visible inside P as o.os. Beta allows this reference chain to be
renamed or aliased with some simpler name, say ss. If ss is the alias of 0.08,
every time ss occurs in a component of P , it will refer to o.os. This mecha-
nism adds considerable naming power to Beta, even though, strictly speaking,
it violates the conventional conception of block structure in which objects in
enclosing scopes are visible, but those in contained scopes are not (the position
taken by Beta is similar to that in Ada where an enclosing block can refer to
the components of an enclosed (necessarily named) block using a structured
naming process).

This use of part objects replaces multiple inheritance in Beta, but, as the
authors note, multiple inheritance can often be more powerful. However, Beta’s
virtual mechanisms allow it to represent some things which are difficult in lan-
guages supporting multiple inheritance. A virtual pattern is a partial specifi-
cation of a pattern. If a virtual pattern is a part of another pattern, it con-
stitutes a partial description of its container’s structure (and, therefore, makes
its container a partial description); a partial description can be completed or

54 2. Class Fundamentals

instantiated.
Virtual patterns imply the ability to specialise their components. An in-

complete pattern can be seen as something that is more general than those
versions of it that have details filled in. When a virtual pattern that occurs
as a part of another pattern is specialised, that virtual pattern can be given
access to its container’s component slots. In their paper on part objects, Mad-
sen and Pedersen give the example of a Person pattern which contains a name
and an address. The address attribute (slot) is filled with a virtual pattern
of type Address. The Address type (pattern) is virtual and can be extended
(specialised) by the provision of a printLabel method which prints the name
of the instance of Person. This requires the specialisation of the component
and has little to do with the Person pattern. Note that we still need to define a
new pattern in order to specialise Address, just as we would if we had multiple
inheritance. The example shows that we can do some things with part objects
that we can do with multiple inheritance.

Equally, a water-skiing accountant can be defined using part objects. We
need a Person pattern which has two attributes, one to hold the occupation
and one to hold the hobby (or preferred sport), in exactly the way that we saw
when we originally motivated multiple inheritance. The difference is that we
now view these slots as defining aspects of the Person, just as we would define
perspectives in Braspenning and Bakker’s INCA (see Bakker’s dissertation [7]
for details).

EXERCISES

2.1. Explain the difference between a class and an instance.

2.2. In the following, identify the class and the instance(s): Integer, 5;
3.141559, Real; “string”, STRING

2.3. Must all classes have more than one instance? Give an example of
a class with more than one instance and of a class with exactly one
instance. In addition, give an example of a class with no instances.

2.4. Class A has slots a1, a2 and a3; class B has slots b1 and b2; class C

has c1 as its sole slot. If A is the superclass of B and also of C (but
C is not a subclass of B), list all the slots of class B and of class C.
If A is the superclass of B and B is the superclass of C, list all the
slots of A, B and C.

2.5. State the visibility rules for slots when the three visibility annota-
tions are present. If class A’s slots are a1 (private), a2 (protected),

2.11 Part Objects 55

a3 (public) and B’s slots are b1 (protected) and b2 (public), class
C’s sole slot is c1 (private), and if A is the superclass of B, list the
following:

a) The slots visible to an entity outside the inheritance chain to
which A and B belong;

b) The slots visible to all subclasses of A and to all subclasses of B

Which entities can see C’s slot?

2.6. Justify the visibility rules.

2.7. Assume that there is a module construct added to an object-oriented
language. This new construct has an export and an import opera-
tion. The export operation makes all the classes it lists visible outside
the module in which they are defined, while the import operation
makes those classes it lists available for use within the module that
imports them. Assume, furthermore, that classes have the three vis-
ibility levels (public, protected and private) employed by C++ and
Java. Determine the interactions between the visibility levels and
the import/export operations.

2.8. Can an abstract class have instances? If not, why not?

3
Prototype and Actor Languages

3.1 Introduction

In the last chapter, I introduced some of the fundamental concepts of class-
based programming languages. The task of this chapter is to introduce two
competing paradigms that are closely related to each other: prototype and Ac-
tor languages. Historically, prototype languages developed out of the concepts
of Actor languages, but they will be considered in the reverse order because
prototype-based languages are now an area of active research while Actors tend
to be somewhat (unfairly, in our view) neglected.

Both prototype and Actor languages are based upon the idea of copying
entities and communication by passing messages. These differences contrast
strongly with class-based programming.

3.2 Prototype Languages

Prototype-based languages are based upon the idea that objects that repre-
sent individuals can be created without reference to class-defining; this clearly
distinguishes prototype from class-based languages. When a class has been de-
fined, it can be instantiated to create objects which can be manipulated by
other program components. Prototype languages are based upon the idea that
objects can be directly manipulated and can be related by various similar-

58 3. Prototype and Actor Languages

ity relations; inheritance is a static property between descriptions that is not
employed by prototype-based languages. Instead, prototype languages work
by a process of copying existing entities and modifying the copies to produce
new entities with similar, but not identical, properties. Sets of objects can be
formed on the basis of their similarity along one or more dimensions; they can
be formed dynamically. In a class-based language, similarity is based upon the
inheritance relation.

In this section, I present the basic concepts behind prototype languages and
then explore some of their implications. I will explain the concept of delegation,
the prototype language’s replacement for inheritance and see how it affects such
matters as structure sharing and strong typing. I also consider the role of slots
and methods in prototype languages and how prototypes can be created.

Prototype-based languages are far rarer than class-based ones. In many
respects, prototype languages are still a research area; many issues remain open,
in particular how to relate class- and prototype-based concepts into a single
object-oriented style. Because they are simpler than class-based languages and
because they are better suited to exploratory programming, it is to be expected
that prototype languages will become more common in the future.

3.3 The Concept of the Prototype

There are at least two ways of considering concepts. The first is to treat them
as logical entities. They can be defined and we can produce or find instances of
them. Examples of such a view of concepts are numbers and polygons. When we
encounter a new object, this view of concepts says that we apply the definition
of the concept in order to determine whether the object falls within the concept.
Thus, if we are interested in triangles, we would look to see whether the object
is closed and has three sides (or, equivalently, check to see whether the sum of
its internal angles is 180◦). The logical definition of a concept treats it as if it
had discrete and definite boundaries. For example, we can easily tell whether a
closed figure has three sides; we can tell whether a number is whole and has a
positive value (in which case, it is a natural number). A decision about concept
membership always gives a definite answer (either “yes” or “no”–there is no
“maybe”).

If the world were always amenable to logical definitions of the kind just de-
scribed, life would be so simple! Unfortunately, logical definitions do not always
work. For example, it is extremely hard to tell the difference between a shrub
and a bush. There is certainly a botanical definition, but for ordinary, everyday
purposes, the distinction appears less than simple. The concepts “shrub” and

3.3 The Concept of the Prototype 59

“bush” do not appear to have the crisp boundaries that mathematical concepts
have. The world is full of examples of such concepts. Colours are difficult to
define and do not have crisp boundaries; tastes are also extremely difficult to
capture, as are emotions. Indeed, most naturally occurring things fall within
concepts that have fuzzy boundaries (think of “travelling fast” from the view-
point of walking, roller skating, ice skating, skiing, driving a car, and flying a
plane–each is relative). For this reason, concepts that lack crisp boundaries are
often called natural kinds.

Concepts with crisp boundaries can be defined and the definition used to
determine whether objects do or do not fall within the concept. With fuzzier
natural kinds, a definition must, of necessity, omit some aspects of the concept;
indeed, a definition might be controversial in the sense that some would argue
that it should concentrate on some aspects, while others would emphasise other
aspects. For this reason, the concept of a prototype [58] was proposed.

A prototype is a representative example of a concept, one that is usually
considered to be central to the concept or what most people would agree is
the concept. Consider the concept of a dog. We all agree upon what a dog is;
when we talk (literally, not metaphorically) of dogs, we have no problem in
understanding what is said. However, each of us, when asked, might produce
a description of the “typical” dog that differs from everyone elses in some de-
tails. In an experiment, it was found that undergraduate students in Northern
California have a prototypical dog that is somewhere between an Alsatian and
a wolf. Each student in the study might, as an individual, possess a prototype
that is slightly different, but the “average” of the students was the combina-
tion described in the last sentence. What is important is that each individual
possesses a prototype and is able to determine how close an entity is to the pro-
totype. Thus, for the Californian students, a Labrador will be a better match
than a Boxer; a Labrador is large, has a relatively pointed snout and often has
short hair, while a Boxer, though large, has a very short tail, no snout to speak
of, a flat face and wiry legs. However, a Boxer still has many properties in
common with the prototypical Alsatian/wolf. The ‘distance’ between an entity
and a prototype tells how close to the concept the entity is; nearer entities are
more clearly recognised as falling within the concept than are distant ones.

For prototypes, similarity is a central concept in classification. For logically
defined concepts, definition is used to classify. An entity which is closer to
the prototype is regarded as being more intimately part of the concept than
one that is distant. Distance plays no part in logically defined concepts; they
depend upon the implication relation between definition (i.e., the formation of
subsets). With prototypes, we can say that one entity is more an exemplar of
a given concept than is another; with logic, all we can say is that one entity

60 3. Prototype and Actor Languages

falls within the concept while another does not. Prototypes are more flexible
as a classification device.

It is extremely important to note that there might not be a prototype
that represents a particular concept. The concept might be represented by
some “average” of all the prototypes of a particular kind. Thus, classification
in prototype-based systems is based upon approximations. Concepts in such
systems tend to emerge rather than be defined. This has implications for the
way in which such systems are built and analysed. In particular, the concept
of an abstract object might not apply to a prototype-based system as closely
as it does in a class-based one. The import of an abstract class is to define a
cluster of properties which together are necessary for the definition of other
concepts; abstract classes cannot be instantiated. The lack of instances suggest
that abstract classes represent concepts that are, in some sense, “incomplete”
in that they require their specialisations for completion. Since the concept of
an abstract class implies a concept that cannot be instantiated, it appears
that there could be no equivalent representation in a prototype-based system.
Prototypes are all instances of at least one concept (it can be argued that a
prototype can instantiate more than one concept), so break the fundamental
requirement for abstract classes.

The idea of basing an object-oriented programming language on the concept
of the prototype is due to Lieberman [44]. Until that time, all languages had
been class-based, Smalltalk and Simula67 being the most famous examples.
Lieberman observed that a language could be designed that was based upon
the concepts of prototypes and distance rather than classes and instances. In
a prototype-based language, there is no notion of instantiation, for prototypes
exist as independent entities. In a logic-based description system, there is the
distinction between a class (a definition) and its instances, but in a prototype-
based system, there are just prototypes.

Everything, in a prototype system, is a prototype and is, therefore, an inde-
pendent concept. In such systems, the objects that are manipulated at runtime
(the objects that make it an “object-oriented” approach) are the prototypes.
Prototypes are related to each other in various ways. Relatedness is derived
from the distance between prototypes. In such a system, it is impossible to in-
stantiate a prototype, for the concept has no meaning. Instead, what happens
is that a prototype is cloned and then modified. Initially, the clone is identical
to the prototype from which it was derived, but undergoes modification of some
kind; this modification differentiates the clone from its prototype.

We need to clarify what is meant by a prototype. By a prototype object,
we mean a collection of slots. The slots can contain data or methods (other
distinctions can be made). The order in which the slots appear in the object is
of no consequence, but their presence is. Each slot has a filler; that filler can be

3.3 The Concept of the Prototype 61

Figure 3.1 P2 is more similar to P1 than P3.

data or can be a method. In a prototype, method-containing slots are stored in
the object, not stored in a separate table as in class-based programming. The
set of slots and their fillers “defines” the prototype. The distance between two
prototypes is determined by the number of slots that they have in common and
the contents of those slots. If we have two prototypes, P1 and P2, such that
P1 contains s11, s12, s13 and s14, while P2 contains s21, s12, s13, s22, s23, the
common slots are s12 and s13. If we now consider another prototype, P3 with
slots s11, s12, s31, s32, s33, s34, its intersection with P1 is s1l and s12, but it
has an empty intersection with P2. We can say that P1 and P2 are more closely
related than P1 and P3; P2 and P3 are unrelated (see Figure 3.1).

The cloning method affords considerably greater flexibility in definition than
does the class mechanism. For example, if we had a prototype representing
Accountants, we might find that we need to model a new accountant, one who
water-skis. It would be necessary, in a class-based system, to define an entirely
new class to represent this new kind of Accountant. There would be a problem
with instantiation because we would need to ensure that there was only one
instance of the new class, but class-based languages provide no such support.
Thus, we could have hundreds of Water-skiing Accountants in the program,
with only one of them representing the one we want to model (the others must
be fictional). In a prototype-based system, on the other hand, we first clone
the Accountant prototype and then add a slot to represent this accountant’s

62 3. Prototype and Actor Languages

passtime (with filler water-skiing). We can, of course, clone the prototypical
water-skiing accountant to produce more examples, each of which can serve as
a prototype for other concepts. The different objects representing water-skiing
accountants will differ in the name, so we might have one for Dave, Bill and
Joe. When we clone the original prototype, we can change the fillers of its slots,
so changing the name is possible. We might have started with Dave, a water-
skiing accountant, and then discovered that Bill and Joe have a similar hobby.
We can clone Dave and replace the filler of the clone’s Name slot so that we
name Bill and Joe. This is shown in Figure 3.2.

Figure 3.2 Prototypes and their relationships.

We might also discover that Dave has two children, a boy and a girl, so
we can add slots to describe this. Once these slots are defined, we have a
prototype for water-skiing accountant with two children. This new prototype
can be extended further when new objects are required or discovered. In each
case, we clone the prototype that we have and add new slots and/or modify
some of the existing slots. It is permitted to modify any slot in the prototype
object: thus data and methods can be modified during the cloning operation.
This allows the user (or a program, note) to alter prototypes as and when more

3.3 The Concept of the Prototype 63

information is available; it also allows the easy definition of new concepts when
the need arises.

In some cases, one might want to clone a prototype a number of times,
each time producing an exact copy of the prototype, and storing them in a
container structure (e.g., a vector or a list). An example of such a process is
the formation of a number of modules, each of which is used to store proto-
types. Seemingly, each module will have an identical structure to the original
prototype module. In a similar fashion, we might want to construct a number
of stack prototypes by cloning an original stack object. Each stack, like each
module, will be identical to the prototype (and each will be a prototype), but
will have different contents. Difference of content is a valid way to distinguish
between prototypes, as we saw with the examples of Dave, Bill and Joe, the
water-skiing accountants. (Note that it makes the metric finer.)

Difference in the content of a prototype is employed as a way of distinguish-
ing them. It can be used, on the other hand, as a way of classifying them. With
a class-based representation, there is typically only a very few ways to classify
an object. Usually, class-based systems base their classifications either on the
inheritance relation or on a containment relation which relates two classes if
one is used as a component of the other (cf. the part objects in Beta as well as
slots in classes that are filled with instances of some class). This implies that
class-based languages tend to classify objects in relatively few ways. Prototypes
allow the classification of objects along multiple, simultaneous dimensions; clas-
sification is based upon similarity.

Thus, one might classify some objects in terms of their distance from some
specially designated object. For example, given the accountants example above,
we might select some object representing a particular accountant, one, say, who
merely does his job and goes home (and has no exciting hobbies), and compare
the objects representing water-skiers, etc., with it. Accountant representing
objects are, presumably, derived from others, so we could select any of the
objects used in the derivation of the accountant objects and classify with respect
to them. We could select any of the properties represented by a set of prototypes
and arrange them in some order; we can classify along any number of dimensions
implied by the representation.

From a more systems-oriented perspective, there are other ways to classify
an object if it is a prototype. For example, we can collect prototypes according
to the slots they contain. If there is some slot of particular importance, it can
be used to collect objects. If the author of a prototype is recorded, in a multi-
programmer environment, it can be used to classify objects. The derivation of
objects can also serve as a basis for collection and organisation. This implies
a considerable flexibility in prototypes that is seemingly lacking in class-based
systems.

64 3. Prototype and Actor Languages

3.3.1 Slots and Methods

Prototypes are composed of slots. Slots, in this kind of language, are simpler
than in class-based languages. Here, they are storage locations that are located
in objects. Slots can be divided into two types: data and method slots. Data
slots hold data items and method slots hold methods or routines. Access to
slots in a prototype-based language is very often based on direct access and
not on the reader/writer operations that are found in more modern class-based
languages like Sather or Dylan. Methods, like data items, are directly stored
in objects, so access to them is direct and based upon an object, not upon
underlying tables (as is the case with the multi-methods in CLOS and virtual
member functions in C++).

Data slots hold data items. Data items are just values such as integers,
characters, strings and references to other objects (including the object itself).
Data slots can be divided into constant and mutable slots. Constant slots are
read-only, while mutable slots (sometimes called volatile slots) can be updated.
When a slot is to be read, the object in which it is held is used for direct
reading. In a similar fashion, when a mutable slot is to be written, the object
in which it is held is first accessed and the slot is then directly updated; the
update is applied to the object’s structure.

Methods are stored exactly like data values. When a method is to be exe-
cuted, it is extracted from the object in which the method resides. Sometimes,
methods will be shared between objects, so it is to be expected that method
slots will contain pointers. In [52], methods are represented by objects. This
enables methods to be treated like other kinds of object (an approach to rep-
resentation that was employed by Smalltalk-80 [34]) and to be allocated in a
uniform fashion. Under this representation, when a method is to be invoked,
its object is first accessed and the apply method in that object is then called
to apply the method body to its arguments. It is usual for method slots to be
volatile for the reason that other operations on prototypes can change (redefine)
the method that is stored in the slot.

Sometimes slots are divided into private and public. A private slot is one
that can only be accessed by methods and slots in the same object. A public
slot is one that can be accessed by anything. Private slots are useful for hiding
information that is of a partial nature (intermediate results) and can assist in
ensuring modularity.

Slots are represented in a more straightforward way in prototype languages
than in class-based ones. The primary reason for this is the way in which objects
are created and shared.

3.3 The Concept of the Prototype 65

3.3.2 Message Passing

Like Smalltalk, many prototype-based languages are based upon message pass-
ing. Messages are used to invoke methods stored in slots. Messages contain
routing information, together with the parameters to be supplied to the method
when it is found. The routing information consists of the name of the object
to which the message is to be sent and the name of the method which is to be
applied to the parameters. In fact, it is strictly incorrect to talk of the “name”
of the method, for the method is indicated by an identifier called the selector.

A method selector often corresponds to the name of the slot in which the
method is located in the receiving object. However, this is not necessarily the
case. In Smalltalk, for instance, each class is associated with a method table
that collects the classs methods into one place so that they can be located
easily and quickly. The method table is indexed by the selectors declared by the
class, so the table maps selectors into method objects (in Smalltalk, methods
are represented by objects residing in the object memory). There is no real
reason why the selector used to locate a method should be the name of the slot
in which the method is stored; if that slot is ever renamed, the selector will
have to be renamed as well. Typically, though, the selector is the slot name.

Messages in some languages follow the Smalltalk model and are represented
by objects. This permits the interface to messages to be uniform across all
message types; the interface determines the operations that can be performed
on the message in order to extract the various pieces of information that it
contains. Thus, the method object specifies a method which returns the name
of the destination object, the selector and the various arguments. Message
objects also allow the specification of a uniform method for interpreting them;
objects are required to support methods for the application of method code
to parameters, as well as, if appropriate, methods for obtaining methods via
delegation.

There is no absolute reason for implementing method invocation as message
passing. However, an approach based on message passing leads automatically
to a more uniform interface for method invocation. Messages also allow more
flexible kinds of control structure (as observed by Hewitt [41]) and also allow
mechanisms such as broadcast to be implemented.

3.3.3 Creating New Objects

In class-based languages, new objects are created by the instantiation of classes.
In a classless approach such as prototype-based languages, there are no classes
to instantiate. Instead, two mechanisms are usually provided:

66 3. Prototype and Actor Languages

– a mechanism for creating completely new objects, and

– a mechanism for copying existing objects.

The first mechanism is employed when there is no existing prototype upon
which to base the definition of a new object. The second mechanism is the one
that is most commonly used. Objects are usually constructed by cloning (or
copying) existing objects and then modifying the copy.

When an object is created afresh, it is defined in terms of its slots and the
values and methods that fill them. The programmer must create the object,
name it (perhaps), and specify its slots. Once this has been done, the object is
ready for use by the program.

More often, new objects are created from old ones using a variety of the
copy-and-edit method often used to modify other kinds of document. This
method is the object cloning method. When an object is cloned, a copy is
made of it. The copy can then be modified in a variety of ways:

– values stored in data slots can be changed;

– constant slots can be made mutable (and vice versa);

– methods can be redefined;

– slots can be added or removed (both data and method slots can be so mod-
ified).

If the language supports them, private slots might be made public, and vice
versa. Note that languages differ in the range of operations they permit on
cloned objects.

Sometimes an object needs only to be copied, not modified. It is possible
for many copies of a prototype to exist at the same time. Such multiple copies
will be distinguished by their names (at the very least, the runtime system will
employ unique names for each object).

When an object is defined by cloning and modifying another object, the
modified clone is often called the child and the object that was cloned the
parent. A reference to the parent object is often stored in the child.

In the original paper on prototype languages [44], it is stated that an object
can be constructed from more than one prototype or parent. In such a case,
each prototype will contribute some slots to the resulting object; the resulting
object will also contain some methods from the objects which were composed
in order to form it. In the SELF language [24, 79], perhaps the most famous
prototype language, objects tend to be constructed by cloning a single parent.

As an example of the cloning process, let us consider the following derivation
of the water-skiing accountant object we saw above. Let us assume that there
is a Person object that serves to represent people in general. This object might

3.3 The Concept of the Prototype 67

contain slots to hold the name, address, sex and date of birth of the person
that it represents. We might extend the Person object to create the Accountant
object by first cloning it and then adding a profession slot whose value will be
set to accountant. Next, we clone the Accountant object and add a slot to
represent the person’s hobbies, filling it with the value water-skiing (people
tend to have more than one hobby, so the hobbies slot should probably be
filled with a set of values). The value in the hobbies slot might be a string or
symbol, or it might be a reference to another object; here, if the filler is an
object pointer, the pointer will refer to an object that says what water-skiing is
about. If we desire, we can also add slots that will contain further information
about accountants.

If we want to introduce a new profession, say Dentist, all we need do is to
clone the Accountant object and change the Profession slot’s value to dentist.
This will create a prototype dentist object. It will be necessary to remove all
slots that are specific to accountants and to replace them with slots specific to
the representation of dentists. The removal of slots leads to a change from a
prototype structure to one that is more akin to a class; this process might lead
to a transformation to a more rigid implementation (and relates prototypes
and classes), but remains an idea for research.

3.3.4 Delegation and Shared Structure

When defining a new object, it does not always make sense to remove slots.
Sometimes, it is best to add slots, making the clone more specific in an obvious
way. Similarly, it does not always make sense to copy method slots. When slots
that are part of the definition of an object are omitted, it is necessary to provide
access to them in some way. In prototype-based languages, the operation of
delegation performs this task; delegation replaces inheritance in this species of
language.

Requests made to objects contain references to slots. If the slot is not present
in an object, the request can be delegated to another object. Typically, requests
are delegated to the parents of the object to which the request was originally
made. If the immediate parent of the object does not contain the slot, the
request is delegated to the parent’s parent. This process continues all the way
along the chain of parents. When the slot is encountered, the value which it
stores is returned as the reply to the request. If the slot contains a method, the
method is called and produces a value which is then returned.

If a slot with the same name as that mentioned in a request is present in
the object to which the request is first sent, the value stored in that slot is
returned as the result of the request (or the method it contains is evaluated to

68 3. Prototype and Actor Languages

produce the result). If that slot is also present in the object’s parent, the value
in the parent is ignored in favour of the one stored in the object to which the
request was made. This is analogous to the case with inheritance.

Delegation is an extremely powerful mechanism. Part of its power is derived
from the fact that it can operate on mutable as well as constant slots. Inheri-
tance is based upon a static (constant) relationship between classes. The rela-
tionship between classes is fixed when they are defined and cannot be changed
at runtime. Delegation can operate on slots that are assignable. It is possible
in some prototype-based languages to change the value of the slot being used
to perform delegation, typically the parent slot. This means that the parents
of an object, in a prototype-based system, can be changed at runtime, giving,
thereby, access to different objects at different times. This means that requests
can be interpreted in different ways at different times. This property is some-
times called dynamic inheritance or computed delegation.

Some languages require delegation to be based upon a single slot. In the
SELF language [24], for example, the parents slot is used for delegation. In
this case, the object pointed to by the parents slot is the next to be examined
when searching for a slot. Slots can contain references to objects as well as data
values such as integer or character; objects held in any slot can, in principle,
be used for delegation. Some languages allow delegation to be based on the
value of an arbitrary slot, while others, like SELF, require a special slot to be
updated in order to achieve the equivalent result. Indeed, the value which is
used for delegation can be computed by a method. This makes for a highly
flexible and extremely powerful method for accessing non-local information.

It has been argued by Stein [67] that delegation is no more than inheritance
and that the latter is a more powerful mechanism. When restricted to using
constant slots, delegation would appear, indeed, to be a form of inheritance.
However, the addition of dynamic delegation would seem to make it more pow-
erful than inheritance. Inheritance can be simulated, at a cost, by delegation,
but, in its full form, not vice versa.

The above argument works well when objects are considered as individu-
als. The result of cloning an object is another object. The fundamental idea of
prototype languages is that a prototype is cloned in order to produce a new indi-
vidual from which other prototypes can be cloned; every object, fundamentally,
is considered to be an individual and to have individual properties. Individuals
very often share properties. Shared properties are very easy to implement in an
inheritance-based environment; a class is defined which represents the shared
properties and subclasses are defined for the individuals. The need for the rep-
resentation of shared structure that is akin to classes has posed a significant
problem for prototype-based languages.

The prototype-based language SELF introduces the concept of a traits ob-
ject. A traits object is employed to represent those properties (slots and meth-

3.3 The Concept of the Prototype 69

ods) that are common to a set of related objects. The usual example given in
the literature is of points on a two-dimensional plane. In a prototype language,
points are represented by independent objects, one for each point. A Point

object has a mutable slot for each of the x and y components of a co–ordinate.
Every Point object has, as its parent, a Point traits object which represents
everything that is common to all points. For example, the Point traits object
will have a method for adding and subtracting points and for printing points.
Modifications to the Point traits object will be automatically propagated to
the individual points.

The result of adding a traits object to a prototype-based system is to in-
troduce something akin to a class, but one which operates by delegation.

The traits approach to common structure is not the only one to be found in
the literature. A notable alternative is that adopted by Taivalsaari in his Kevo
language [76, 77]. Traits is very powerful, but structure and contents are the
individual properties of every single object. Global changes to the structure of
all objects of a particular kind are not very easy to apply when using delegation
[67]; global changes of this kind are very easy to apply in class-based languages
by defining an appropriate class.

The Kevo language was designed specifically to overcome this problem with
delegation-based prototypes. It is based upon two fundamental mechanisms:
concatenation and module operations. These two mechanisms define the struc-
ture and behaviour of objects. Paradoxically, Kevo achieves its goals by treat-
ing objects as individuals. Kevo regards shared structure as an implementation
problem. The concatenation concept involves the addition of new slots to an
existing set; the concept of prefixing in Simula later evolved into the concept of
inheritance, was originally defined in terms of textual concatenation of program
blocks.

Every Kevo object can be considered to be a complete set of all the proper-
ties associated with all of its parent objects. This means that Kevo objects are
entirely self-contained and no parent relation is required to express inter-object
derivation relationships.

Kevo objects can be constructed in the two ways described above. They
can be created anew by the specification of slots and methods. Alternatively,
they can be created by cloning and modification. When cloned, all properties
(slots and methods) of an object are copied. Then, modifications can be made
to the new object; the modifications are called module operations. The module
operations that can be performed on an object are:

– add a slot to an object;

– remove a slot from an object;

– rename a slot;

70 3. Prototype and Actor Languages

– hide a slot (i.e., make it invisible to clients; make it private to the object);

– show a slot (i.e., make it visible to clients; make it public);

– redefine a slot.

The operations listed above apply to a single object. There are variations
which operate on all objects of the same kind (a clone family) or to larger groups
of objects. The extended variations operate on the collections that Kevo uses
in representing shared structure.

After cloning an object, it can be acted upon by one or more of the above
module operations. Each of the operations changes the structure of the object;
no other object is altered by the application of one of these operations.

The problem of handling shared structure is solved in Kevo by means of a de-
pendency mechanism which records the derivation of an object. The mechanism
records those objects which have been involved in the successive transformation
of one object into another. This enables the system automatically to maintain
clone families of objects—collections of objects that are cloned from the same
source. The user has the choice of modifying one or more of the objects in a
clone family, a property which distinguishes it from delegation which would
require modification of all objects. By using the concept of a clone family, a
single operation can be made to apply to many objects.

Similarly, module operations can be applied to larger collections of objects.
The Kevo system provides an object called Root which divides the system into
distinct subtrees that hold different kinds of object. The different kinds are
maintained in a part/part-of hierarchy. For example, the Root object contains
a reference to the Prototypes object which contains references to the Object,
Array and Set objects. The user can attach their own objects to this hierarchy.
Module operations can be performed on these objects and the objects derived
from them; the larger group operations apply to them. As stated, the hierarchy
of objects stored under Root is maintained by the user while the organisation
describing clone families is maintained by the system.

In the Omega language [10], a prototype serves as the basis for the produc-
tion of clones. Clones are copies of the prototype; they are members of the same
“family” of entities whose structure and behaviour is defined by their proto-
type. Cloning is the operation that is most commonly performed at runtime.
Objects are cloned from a prototype whenever a new object of that family
is needed by the computation. If the programmer needs a new object with
properties that are slightly different from one of the existing prototypes, the
existing prototype is copied and modified to produce a new prototype. The
prototype which formed the basis of the new one remains unchanged; when a
new prototype is defined in terms of an old one, the old one is copied so that
it cannot be changed. That new prototype can serve as the basis for cloning.

3.3 The Concept of the Prototype 71

The definition of a new prototype is a separate, interactive operation which
is performed by the programmer, not at runtime as the standard mechanism
for creating objects. Should a prototype be modified by the programmer (and
it can only be performed by the programmer in Omega), the changes are au-
tomatically propagated by the Omega system to all the prototypes that are
defined in terms of the one that has been changed. If the programmer needs a
completely new kind of operation, it can be defined as a prototype which can
be treated like all other prototypes and, therefore, can be used as the basis for
cloning at runtime.

Omega also attempts to ameliorate another problem with delegation. When
an object is defined by delegation, its interface is not its own. The slots that are
local to an object are part of the interface, but also the slots that are present
in the object from which it was cloned. When a parent object is modified (an
operation which, in an interactive environment, can occur at the same time
as one of the parent object’s methods is being executed), the interface can be
changed to a considerable extent. Equally, two objects that start out with the
same interface can be modified to such an extent that their interfaces no longer
remain compatible. This implies that delegation and individual alteration of
objects precludes static typing. Prototype-based languages for this reason are
often associated with dynamic typing and with an exploratory programming
style. Omega, using its version of inheritance and two creation methods, sup-
ports static typing of its slots.

In each case, the semantics of method application in SELF, Kevo and Omega
is different from that found in class-based languages. In a class-based language,
when a message is sent to an instance of a class, the required method is ob-
tained using inheritance if necessary and applied to the message. The first
argument of every method is implicitly a variable which refers to the instance
to which the invoking message was sent (compilers usually insert this variable
automatically). When the message is received, the method is applied to it and
its first argument is bound to the receiving object. In other words, the self

or this pseudo-variable that can be used in method bodies is always bound
to the receiver of a call; this permits the method to access the receiver’s local
slots and methods.

In a prototype-based language, the method that is to be invoked is first
located and is then returned to the sender of the message. The method is then
applied to the sending object. The self or this pseudo-variable is bound to the
sender, not the receiver. It is necessary to make some minimal assumptions
about the structure of senders when defining methods for use by prototypes.

72 3. Prototype and Actor Languages

3.4 Methods in Prototype Languages

Prototype-based languages, as should now be clear, do not support inheritance.
Instead, they employ delegation and cloning as alternative mechanisms. When
an object is cloned, its methods will be automatically available to its progeny.
This means that all the methods of a parent will be available to all of its
offspring. It is possible to remove methods from prototypes, so there is the
freedom to remove as well as to redefine methods.

Delegation, particularly computed delegation, allows a prototype access to
a further repertoire of methods. Computed delegation allows an object to de-
termine at runtime which methods it should invoke. These clearly indicate a
more flexible mode of operation, and it must be remembered that all meth-
ods are invoked in the context of the delegating object (caller). This solves a
number of problems with respect to free variables.

The SELF language, like Smalltalk, makes extensive use of block expres-
sions. This makes it possible in SELF to make extensive use of higher-order
functions. In particular, it makes possible the updating of the delegating ob-
ject’s slots with blocks and it makes it also possible for the delegating object
(or the delegated object) to influence the behaviour of methods by supplying
functional arguments. Blocks can interact with computed delegation by pro-
viding a block that determines the object to which to delegate; the algorithm
can be changed by supplying a different block.

As noted when introducing prototype-based languages, methods are always
executed in the context of the object that is engaging in delegation. Thus,
the initiator of a request to delegate is the object which is bound to the self
pseudo-variable, thus permitting the method to gain direct access to the del-
egator’s local slots and ancestors. This contrasts with the case for class-based
languages in which the self variable is bound to the receiver of the message or
request to call a method. For class-based languages, methods can always access
the local slots and inheritance structure of the object whose method is called,
not the object which is calling the method. This difference has implications for
modularity and for the way in which methods must be written. Clearly, in a
class-based language, slots and inheritance structure can be made completely
invisible to all other entities in a program or system. In prototype-based lan-
guages, such protection cannot be assured for methods must be able to access
slots and methods in the caller; this is the opposite of what one expects from
the rule of static scoping. Methods, in prototype languages, impose a structure
on the objects which use them; this is a dual way to view the issue.

3.5 Actor Languages 73

3.5 Actor Languages

3.5.1 Introduction

Hewitt (e.g., [41]) conceived of and developed the Actor methodology as an at-
tempt to understand complex parallel systems. As part of this work, concepts
were developed to describe concurrent computations that were fundamentally
expressed in terms of message passing and simple computational entities. The
Actor methodology is very powerful and can also be used to describe the seman-
tics of many programming language constructs. Actor theory explains compu-
tation in terms of the exchange of information in the form of messages between
computational entities called actors. The entities are caused to act when they
receive messages, thus introducing the concept of causality into the description
of programming structures. Work on Actor theory and on areas that developed
from it has led to the introduction of concepts such as future; it also relies upon
and develops concepts such as continuation.

Actors work in ways that are similar to prototype languages. The concept
of delegation is central to the concept of an actor, just as it is to the concept
of a prototype. In Actor languages, delegation is more general than in proto-
type languages because it is not restricted to the parents (if there are any) of
the actor that is engaged in delegation. Even though Actors are relatively old
as a research area, they still remain thought provoking. Work on Actors still
continues at a number of sites world-wide.

In this section, I will first outline the fundamental concepts of the Actor
methodology. As part of this, I describe concepts which are related to those
discussed in the second section of this chapter. Next, I will consider some ways
in which actors can be generalised. In particular, I will consider how message
passing can be generalised and on how scope rules can be used to provide
defaults in distributed systems.

3.5.2 Actors

In this section, I will define what an Actor is and what it does. I will also
consider how actors are connected and perform complex actions. I will use the
account of actors proposed by Agha [2, 1]; later, I will look at the original
proposals made by Hewitt [41].

Fundamentally, an actor is a entity that can engage in computation. Each
actor is known by a unique name, often called its address. Actors respond to
messages which are sent to them by other actors and from sources outside an
actor system. Messages are sent to a unique address; the Actor model does not

74 3. Prototype and Actor Languages

permit broadcast or multicast messages. In order to send a message, an actor
must know the address of the actor to which it intends to send the message.
Each actor is associated with a collection of addresses of other actors (it im-
plicitly knows its own address). The other actors are called the acquaintances
of the actor; actors can send messages to (communicate directly with) their
acquaintances. If actor A has actor B as an acquaintance, A can send messages
to B, but B cannot send A messages unless A is an acquaintance of B (and it
need not be); actors can receive messages from other actors of whose existence
they are ignorant.

A collection of actors is shown in Figure 3.3. The figure shows directed
arcs connecting the actors. The arrow on the arc shows the direction in which
messages can pass between a pair of actors. If two actors can mutually com-
municate, there are two directed arcs connecting them. We have labelled the
arcs with strings, each string denoting the symbolic identifier by which the
acquaintance is known in the actor from which the arc emanates. When there
is no connection between a pair of actors, there is no communication between
them.

Messages contain data upon which the recipient can perform computation.
They can also contain the address of an actor to which the results of the
computation caused by reception of the message can be sent. The specification
of an actor to whom results are to be sent is called a continuation. Actors
specified as continuations need not be acquaintances of the actor performing
the computation.

The set of acquaintances an actor possesses is not necessarily static. It is
possible for an actor to add to its collection of acquaintances. Other actors can
send messages containing the addresses of other actors; the receiver of these
messages can extract the addresses and add them to its list of acquaintances.
Thereafter, the actor can use these new names just like any other acquaintance.
Similarly, an actor can discard acquaintances, for example when it receives
messages saying that they have terminated.

Figure 3.3 Delegation and reply in Actors.

3.5 Actor Languages 75

An actor is associated with a FIFO (First In, First Out) message queue.
This is where messages to an actor are held. A fundamental assumption of
the Actor model is that message delivery is guaranteed. In early versions of
the model, there was no assumption that messages would be delivered in the
correct order; thus, if message 1 is sent before message 2, there would be no
guarantee that they would arrive in that order. However, this assumption is too
strict and severely restricts the range of computations that can be performed
with actors; without the assumption, actors are Thring equivalent in the sense
that any function computable on a Thring machine can be computed on an
appropriate collection of actors.

An actor can therefore be considered to be a pair. One component of the
pair is its message queue, the other is the mechanism which provides it with a
behaviour. The behaviour is what is exhibited by an actor when it receives a
message that it understands. We can think of the behaviour as being the meth-
ods which the actor executes when it receives a message that it understands.
When an actor does not understand a message, a number of possibilities exist.
First, it could signal an error. Second, it could return the message to the sender
(assuming sender addresses are stored in messages). Thirdly, it can forward the
message to one of its acquaintances in the hope that the acquaintance will be
able to respond to it. This third option is called delegation.

Delegation is the response of an actor to a message to which the receiver
cannot immediately respond. Having ascertained that it cannot respond itself
to the message, the actor, A, forwards it to another actor, B, in the hope that
the second actor is able to perform some computation on the message. Actor
B performs some computation, which might include delegation, and returns a
result to A. Actor A can then respond to the original message in an appropriate
fashion. The delegation of a message is shown diagrammatically in Figure 3.3.

Delegation acts in a way similar to inheritance in a class-based language.
Inheritance is, however, a static relation between classes and it is not possible to
alter the relation at runtime. Thus, if class C is a subclass of S, it is impossible
to alter its inheritance links so that C becomes a subclass of S1.

Ordinary delegation works in an equally fixed mode; it is the process of
sending messages to an acquaintance in order for computation to be performed
by the acquaintance. However, it is possible for an actor to perform some com-
putation in order to determine the actor to which it should delegate a message.
The computation might be based upon information contained in the current
message or on information stored in the actor but not included in the list of
acquaintances. In the latter case, one might see this as a form of making ac-
quaintances explicit. By performing computation, an actor is able to extend
the range of its potential acquaintances (after performing the computation, the
result, the address of the actor to which to delegate, might be discarded—this

76 3. Prototype and Actor Languages

is why we refer to them as potential acquaintances). Messages can explicitly
contain the address of an actor to which it should be delegated; the continua-
tion is one example of how addresses in messages can be used. When an actor
receives such a message, it might examine the message and determine that it
can do nothing with it; it then takes the actor address from the message and
forwards the message to this other actor. The actor address contained in the
message might be stored by the receiver to become a permanent acquaintance.

The behaviour of an actor is its response to a particular message. Sometimes
actors are described as being purely functional in nature, while, at others, they
are procedural, at least in part. A purely functional account of actors requires
each actor to be side-effect free; that is, functional actors can only engage
in message passing, value binding and behavioural replacement. Behavioural
replacement occurs when a message is received by an actor. It is the operation
by which an actor replaces its current behaviour and creates an actor with a new
behaviour that is intended to handle the computational situation demanded
by the latest message; the actor is then free to behave as it did before the
message arrived. This has the implication that the actions a functional actor
performs are based upon the messages that it receives because it is typical for
the reception of a message to cause replacement of behaviour. When an actor
replaces its behaviour, it can replace it with the same behaviour it had before;
this allows an actor to respond in the same way to every message.

Let us consider the factorial actor in more detail as an example of actor
programming. The actor always expects its input messages to contain a num-
ber and a continuation. The number is the value to be input to the factorial
computation and the continuation says where the result is to be sent. The
behaviour of the actor depends upon the message that is received and is as
follows. If the message contains a continuation c and the value zero, the actor
sends the value one back to c and waits for the next message. If the message
contains a continuation, c, and a value, n, that is greater than zero, it creates
a new actor which is an instance of the multiplication actor and sends it the
value contained in the message, n, together with the continuation, c, from that
message. The address of the newly created multiplication actor, m, is bound
to a local variable which enables the factorial actor to send itself a message
containing the multiplication actor as continuation and n − 1 as value. If the
value of n − 1 is greater than zero, a new multiplication actor is created and
sent n − 1 as its value and m as its continuation; the new multiplication actor
then becomes the continuation for a message to the factorial actor.

The multiplication is defined as follows. On creation, it accepts two argu-
ments: one denoting a numerical value and one denoting a continuation. The
continuation denotes the actor to which the result of the multiplication is to be
sent. The multiplication actor then waits for a message containing a value. It

3.5 Actor Languages 77

multiplies the value in the message with the one supplied when it was created
and then sends a message to the continuation containing the product.

When computing factorial, recursion is replaced by actor creation. The value
whose factorial is to be computed denotes the number of multiplication actors
required to compute the result. Thus, for 3!, 3 multiplication actors are required;
for 12!, there will be 12. In addition, there is an original continuation actor
which is to receive the result of the factor calculation.

Some might find the above example hard to follow. When programming with
actors, it is very much the case that everything that one has previously learned
about programming must be forgotten in favour of a completely new way of
thinking. The key to the factorial actor is that it creates an actor to perform
each multiplication; each multiplication actor is supplied with the address of
the actor which is to receive the result of its computation. This leads to a chain
of actors, each waiting for the value output by the one before it; for actor n, the
previous actor is responsible for computing the product representing (n − 1)!
Even though the principle might be relatively simple, it is not totally obvious;
actor programming can be difficult because of the large amounts of parallelism
that are possible.

Procedural actors are permitted to have an internal state, so behavioural
replacement is not required. Hewitt’s PLASMA [41] is an example of a more
procedural account of actors, as are the ABCL languages [83]. Here, an actor is
permitted to contain local read-write variables and is permitted to update these
variables when required. This contrasts with functional actors whose variables
are read only and have the single assignment property (they can be assigned
to, or bound, only once). With a procedural actor, recursive message passing is
still permitted (this is how the factorial actor worked, recall). The state of an
actor now depends upon the state of its local variables, not just on the sequence
of messages it has received. This has the implication that the state of an actor
can be altered by assigning to its local variables; thus, when an actor sends a
message to itself, the interpretation of that message can be altered by the state
of the actor’s local variables.

For example, a procedural factorial actor can store the result of the previous
factorial in the sequence in a local variable, thus allowing the removal of the
multiplication actor from the solution. However, a procedural factorial actor
will be restricted to computing one factorial at a time whereas the functional
one could compute many for the reason that each independent computation
will have a distinct continuation. The functional actor does not store internal,
intermediate state, but the procedural one does; the intermediate state held
by the procedural version implies that, should a new request to compute a
separate factorial arrive, the procedural actor will either have to make it wait
until the current one is complete, or it must replace its behaviour so that it can

78 3. Prototype and Actor Languages

handle the request. In this case, behavioural replacement will be made on the
assumption that the computation of one factorial can be separated from the
computation of another. Thus, when a new request comes in, the factorial actor
must divide so that the current calculations become an independent process and
the new calculation can be started.

The state of an actor computation is often distributed among a number
of actors. This is reasonable because the Actor model is a model of naturally
concurrent computation. This fact has implications for the description of a
computation that is performed by a collection of actors and for the description
of how the system operates. Actors work by exchanging messages; reception of
a message causes the actor to change its state. The influence of one actor upon
another is, therefore, assumed to be causal in nature. The state of an actor
system at runtime is dependent upon the messages that have been exchanged
by the actors in the system; when the actors are procedural, the state is also
partially determined by the state of each actor’s local variables. The state is,
however, distributed; this is a fundamental property of actor systems. The
local state of an actor depends upon the messages it has received and, in the
case of procedural actors, upon the results they have returned. Actor-based
programs tend to have very simple components that are assembled in complex
ways; the complexity of the resulting behaviour is a direct result of the complex
interactions between simple components.

3.5.3 Extensions to the Actor Concept

Actors have been highly influential, both as a proposal for practical concurrent
programming and as a theory of computation. Since the publication of [41],
a considerable amount has been written and published about actors. Agha’s
work, in particular his book [2] and many of his papers (see the UIUC Web
or FTP site) and the paper [3], show that Actors is not, as some might think,
a dead area; on the contrary, it still attracts attention. For example, Briot, in
a series of papers [13], has shown how the Actor model can be embedded to
advantage in the more conventional environment of Smalltalk.

Further evidence of the viability of actors can be seen from the work of
Yonezawa et al. on their ABCL languages [83], and, more recently, the Obliq
language [21] of Cardelli, a language designed for distributed programming envi-
ronments such as the Internet. I will briefly consider each of these developments
in turn, for they show a different approach to object-oriented programming lan-
guages.

The ABCL languages [83] are actor-based and clearly object-oriented. These
languages are procedural in nature in order, according to [83], to make them

3.5 Actor Languages 79

easier to use. They allow objects to be created by instantiation and objects can
contain references to other objects in local variables; local variables describe
the local state of an object and are invisible to everything outside of the object
in which they reside. Objects in ABCL form visibility barriers. An assignment
mechanism is provided to update local variables. There are no global variables.
The ABCL languages are pure object-oriented languages, therefore.

Within an object, messages are received and interpreted in terms of pat-
terns. The handling of messages in this way dates back to PLASMA [41] and
makes it considerably easier to write message-handling code and to understand
what the form of a message is. The patterns are associated with sequences of
actions which are performed if the latest input message matches the pattern.
The patterns are evaluated in turn until one matches the message. When the
pattern is matched, the corresponding action sequence is executed to elicit ei-
ther a change of the internal state of the object or to send a message to another
object (or both). Matching of the patterns is required to be sequential from the
top of the object to the bottom (“top” and “bottom” being defined in terms
of the appearance of the object on the page). Thus, the reception of a message
can cause the internal state of an object to change, just as it can cause the
external state of the system of objects to change.

One immediate observation that can be made about an object, and about
actors in a notation like PLASMA, and which can be disguised in languages
like Act1 [45], is that they resemble an ordered sequence of production rules.
A production rule is an if-then construct often found in Artificial Intelligence
[80, 28, 29]. What makes an actor different from a collection of rules is that
such actors have local variables which are used in the component rules.

A distinction is made in ABCL/1 between a dormant (or waiting) and an
active mode. When an object is in the former mode, it is waiting for messages
and is inactive. When in the active mode, an object is performing actions and
processing messages. If, at the end of processing a message, there are no more
messages in the object’s input queue, it enters the dormant mode, otherwise
it remains active until all of its messages are processed. An object remains
dormant until it receives a message. Sometimes, however, an object needs to
enter the waiting mode and wait for a particular message or for particular
messages. In ABCL/1, this transition is achieved by means of a select statement
similar to that in Ada [8]. The ABCL/1 select statement is pattern-based and
conforms to the same syntax as the body of an object. The idea is that the
object enters the select statement which then puts it into a waiting state. If a
message that matches any of the select statement’s patterns arrives, the object
becomes active once again and processes that message.

ABCL/l enriches the ability of objects when sending messages by introduc-
ing different kinds of message-passing style. In addition, there are two ways

80 3. Prototype and Actor Languages

to send a message in this language. First, messages can be sent in either the
ordinary or express modes. Objects have two message queues, one for each of
the two delivery modes. When an object receives a message in express mode,
if that receiving object is already active, the actions it is performing are sus-
pended until it has handled the express message. When the express message
has been dealt with, the suspended actions are resumed; there is an option to
abort suspended actions, but the default is for their resumption. If an object is
in the express mode and is, therefore, handling an express message, any newly
arrived express messages are placed at the end of the object’s express message
queue. Ordinary mode messages obey the protocol described in the previous
paragraph; the arrival of an ordinary mode message causes an object to enter
the active mode if it is dormant; otherwise, the message is placed at the end of
the object’s ordinary message queue.

The language also introduces three ways in which a message can be sent.
The three ways are called Past, Now and Future in [83]. Past message passing
corresponds to the normal way of sending messages in actor languages. That
is, past message passing is an asynchronous transmission of a message; the
message is stored in the receiving object’s message queue when it arrives at its
destination. Yonezawa et al. [83] state that they assume that message arrival
order is the same as transmission order, an assumption originally missing from
the actor model (a point mentioned above). Now message passing is, basically,
synchronised message transmission in which the receiver acknowledges receipt;
it can be considered as a form of remote procedure call (RPC). The sender and
receiver synchronise in order to exchange the message. When the receiver has
received the message, it returns a result to the sender of the message and the
two objects continue on their separate ways.

The final kind of message–passing protocol, the so-called Future protocol
might not be as familiar to readers as the other two kinds. Future message
passing is similar to the Now protocol, but differs in that the sender does not, at
the time the message is sent, require an immediate result. The sender continues
with its computation immediately. When the sender of the message needs the
result, it checks a special variable that is associated with the, as yet, unsatisfied,
request; if that variable contains a result, it is employed in the remainder of
the computation. This mechanism is similar, but not identical, to the future
construct employed in some concurrent LISP dialects [35]. In these LISPs, the
result of a computation need not be returned immediately but a future can be
returned in order to stand for the value in later computations; when the value
represented by the future is required, the future is required to compute the value
(or forced). With futures, the caller demands the execution of the process that
will produce the result and waits until the future is able to return a meaningful
value; with the future message–passing protocol, the producer binds the result

3.5 Actor Languages 81

to a variable supplied by the consumer and the consumer must wait for that
variable to become bound to a meaningful value. The two mechanisms, seen
this way, are dual.

The ABCL languages started with a relatively straightforward concurrent
programming language. Since then, reflection and distributed programming
have been of interest to the ABCL group and later versions [82] have been
heavily influenced by the need to perform reflection, particularly in a distrib-
uted environment.

The Obliq language was developed by Cardelli at DEC Research [21] as a
language for distributed programming. A modern distributed processing envi-
ronment will be composed of servers of various kinds, one of which will be a code
server: a server that delivers pieces of code which can be integrated into other
applications. Obliq provides support for code servers by permitting pieces of
code, methods, to be exchanged between objects. The language is one in which
the copying of objects is performed rather than instantiation; messages can be
used to change the values stored in an object’s slots. The copying operation
does not permit the user to add or remove slots from an object. The language is,
therefore, close to actor languages and also close to prototype-based languages,
though it lacks some of the features found in the latter. The language is com-
pletely different from class-based languages because no inheritance structure
is defined. Obliq uses a form of delegation. Obliq permits objects to migrate
from one site to another, i.e., from one processor-memory pair to another; this
has consequences for the variable binding strategy used in the language for the
reason that free variables must be captured somewhere.

At one stage in the development of the actor model, messages were also
referred to as “actors” (for example, [41] does this). In [3], Agha et al. make
the observation that there are problems in allowing messages to contain arbi-
trary code. The reason for this is that they will contain variables which must
be bound; if they are unbound, they will constitute “holes” in the messages,
and these holes might be erroneously bound to strange values in the receiving
environment. Similarly, mobile Obliq objects might contain free variables which
might be erroneously bound in a receiving environment. To solve these prob-
lems, Obliq employs a rigid lexical scope rule. Thus, free variables in messages
and objects are bound to values in the defining environment, not in the receiv-
ing one. This permits messages and objects to be sent with impunity across a
network.

Obliq shows that actor concepts are still part of current research. Indeed,
as time passes, problems observed with actors are being solved. The actor
approach has, in addition, been the source of the prototype-based programming
approach. The reason is that the concept of delegation employed in prototype
languages is a direct descendant of that in actor languages, and the idea of

82 3. Prototype and Actor Languages

creating new objects by copying and then modifying them is also an actor-
based concept. In an actor language, new objects are created by copying existing
ones and then sending them messages containing the values of what amount to
instance variables (acquaintances, as well as other values).

EXERCISES

3.1. Javascript is claimed to be a prototype-based language. Examine the
language in detail to determine whether this claim is justified.

3.2. Compare method dispatch in prototype-based languages to that in
class-based ones.

3.3. Define a stack data type in a prototype-based language like SELF.
Describe and account for the differences between it and an imple-
mentation in a class-based language.

3.4. What is the property that defines delegation?

3.5. Explain how prototypes differ from classes. Should prototypes be
modifiable at runtime?

3.6. How is the concept of similarity important in prototype-based lan-
guages? What is the corresponding notion in a class-based language?

3.7. CLOS allows classes to be defined at compile time and modified at
runtime. Does this make CLOS a prototype-based language?

3.8. Explain the use of traits objects in SELF.

3.9. Describe the type system of Omega and describe how types relate
to objects in that language.

3.10. Explain how an object is created in a prototype-based language. In
your answer, consider the roles of copying and editing.

3.11. How does delegation work in an Actor-based language?

3.12. What is the purpose of behaviour replacement in Actor languages?

4
Inheritance and Delegation

4.1 Introduction

Inheritance in its simplest form is performed by classes in class-based pro-
gramming languages. Languages based upon prototypes support a mechanism
called delegation which appears to be more general and, in some ways, more
fundamental than inheritance. Inheritance, though, is an extremely important
concept and is found in many computer systems (the X-windows system, for
example), as well as object-oriented languages.

The simplest form of inheritance, simple or single inheritance was discussed
in a little detail in Chapter 2 above (Section 2.8). My aim here is to introduce
multiple inheritance, the generalisation of single inheritance and to discuss its
properties and problems. I will, as a consequence, need to introduce the concept
of a mixin, a class that is introduced into the inheritance lattice with the sole
purpose of combining superclasses. A discussion of mixins naturally concerns
abstract classes, so I consider their behaviour under inheritance as well. As part
of the discussion of multiple inheritance, I will present a number of algorithms
for performing inheritance, and I will show that there is little agreement as
to what the correct approach is. This naturally leads to the question as to
whether there are alternatives to multiple inheritance. As a partial reply, I will
return to the concept of delegation in prototype-based languages and will see
that it is similar, yet better behaved. I will also consider the case of mixins
under delegation and will see that they form a natural method for combining
properties in a prototype-based language. I will, then, consider an interesting

84 4. Inheritance and Delegation

proposal that single inheritance be made fundamental and that other properties
reveal an underlying conception in which perspectives are important. I next take
a look at a completely different way of structuring programs, block structuring,
and briefly examine the concept of a partonomic organisation.

The reader is warned that the concept of inheritance has generated an enor-
mous amount of literature. There are different interpretations of single inheri-
tance, and many different proposals for how to go about multiple inheritance,
let alone determine what it means. As a consequence, I cannot present all per-
spectives and approaches. Instead, I have chosen what I believe to be the key
aspects and have discussed them; other approaches or aspects are ignored. I
hope that I have included sufficient pointers into the literature for the interested
reader to follow them and deepen their understanding of these concepts.

4.2 Interpretations of Inheritance

Even though inheritance seems well understood, there are still different views
as to what it is. Different views imply different semantics. In this section, we
consider some of these views. We will revisit the view of inheritance as code
sharing.

The most common interpretation of inheritance is to model classification
hierarchies in the chosen application domain. In this case, subclasses define sub-
types, or specialisations of their superclasses. The domain itself provides rules
which determine when to create a new subclass; the class hierarchy should be
meaningful when the application domain is understood. This interpretation of
inheritance is the one adopted in Chapter 2 above, and it is the one that is most
often cited in textbooks on object-oriented programming. It is the view that
was assumed above when discussing multiple inheritance. Multiple inheritance
is viewed by its exponents as being a natural extension of single inheritance.
The big advantage of this view is that it corresponds to the application domain
in a natural fashion; this makes for a more easily understood structure and
organisation of objects.

A second interpretation is incidental inheritance. It was proposed by Sakki-
nen [59]. Incidental inheritance occurs when a superclass possesses a property
(data slot or method) which is inherited by a subclass even though it is irrel-
evant to the subclass. We have already seen how incidental inheritance occurs
if we define a LIFO stack in terms of a DE queue. Stacks usually operate in
terms of addition and removal from one end of a linear data structure; DE
queues, on the other hand, allow additions at both ends of the data structure,
but removals at only one end. Consequently, if a stack is defined in terms of

4.3 Inheritance as Subtyping 85

a DE queue, an extra addition operation is inherited. That extra operation
is the one that works on the opposite end to the one at which addition and
removal occurs. This extra operation is incidentally inherited as a result of the
definition in terms of DE queues. (It should be noted that when delegation is
used, it is possible to avoid incidental inheritance completely—this is an issue
which is often ignored when comparing inheritance and delegation.)

In Java, incidental inheritance is relatively common. For example, when
creating a subclass of the java.util.Vector class, depending upon the appli-
cation, the subclass can often inherit unwanted operations, for example, the op-
erations removeAllElements, removeElementAt, toString, ensureCapacity
and clone.

The third view we consider starts more from the viewpoint of implemen-
tation. Inheritance is a way of implementing objects by means of sharing. Un-
fortunately, for most accounts of this kind, it can be extremely difficult to
determine when a subclass should be defined; the approach lacks the natural
correspondences that allow the subtyping view to support a natural and easily
understood decomposition into subclasses, for the sharing view must rest upon
how many instances are to be created and what they are to be used for.

The sharing approach reduces to two alternatives:

– inheritance of specifications;

– inheritance of code.

When inheriting specifications, there is a sub/superclass relation between a
class and its superclass. If the subclass is considered a subtype of its superclass,
the subclass can be used whenever its superclass can. When inheriting code, on
the other hand, a sub/superclass relation does not necessarily exist. There are
considerable difficulties in designing languages that support specification and
code inheritance with equal ease.

4.3 Inheritance as Subtyping

A problem with inheritance is that it should be hidden from its subtypes (its
clients). The way in which a class is derived should not matter to users of that
class. Some methods for treating classes are fragile in the sense that the effects
of inheritance can be felt when redefining or manipulating objects in various
ways (see the discussion of graph inheritance below, Section 4.8, for one such
example).

Inheritance can appear in the external interface of a class if one adopts sub-
typing. Subtyping consists of the rules by which objects of one type (class) are

86 4. Inheritance and Delegation

determined to be acceptable in contexts that expect another type (class): down-
casting is one common example. In statically typed languages like Trellis/Owl
[62] or Sather [60, 61], C++ or Java, subtyping rules are extremely important
for they determine the legality of programs. In dynamically typed languages
(CLOS or Smalltalk) subtyping rules affect the result of type predicates.

As has been seen in Chapter 2, many languages equate subtyping and inher-
itance. In Trellis/Owl, Simula and Sather, class Stack is a subtype of DEQueue
if and only if Stack is a subclass of DEQueue. If the designer reimplements
Stack so that it becomes self-contained and inherits from no parent class, the
assumption that Stack is a subtype of DEQueue would no longer be legal.
Subtyping rules expose inheritance.

In order to avoid this, subtyping should not be equated with inheritance.
Rather, subtyping should be based on the behaviour of objects. If instances of
class x meet the external interface of class y, x should be a subtype of y. The
example of Stack and DEQueue shows that the implementation hierarchy need
not be the same as the type hierarchy (as defined by object behaviour). In the
Stack example, Stack inherits from DEQueue, but is not a subtype of DEQueue
because it excludes operations from DEQueue (in particular the operation that
adds elements to the back of the queue), but DEQueue is a subtype of Stack but
does not inherit from Stack. The relationships between the Stack and DEQueue
abstractions and implementations are shown in Figure 4.1.

Figure 4.1 Inheritance, subtypes and implementation.

The concept of a type hierarchy can be represented by abstract classes.
The virtual or abstract operations of abstract classes document the external
interfaces of the abstraction. A subtype of an abstract class is another abstract
class. However, as hinted at by Figure 4.1, a single class hierarchy composed
of abstract and instantiable classes is inadequate to model, in the general case,
both the subtype and implementation relationships.

4.4 Inheritance as Code Sharing 87

Behavioural subtyping cannot be deduced without formal semantic specifi-
cation of behaviour. Without such definitions, subtypes can only be deduced
on the basis of external interfaces of a syntactic nature (i.e., operation names
and signatures). In addition (or as an alternative), the designer can specify
the classes of which it is a subtype. Yet, as demonstrated by the example, the
designer should be able to specify that the class is not a subtype of a parent or
that the class is a subtype of an unrelated class (which is not its parent). The
first case comes about when the behaviour of the objects is incompatible with
the interface of parent objects. The second arises when the class supports the
external interface of another class without sharing its implementation.

This approach is adopted in Sather [60, 61].

4.4 Inheritance as Code Sharing

According to one view [64], the logical or specificational view, inheritance is a
definitional mechanism. The definition of a class is as a construct that represents
(or defines) a collection of entities. The definition is couched in terms of their
properties and operations. (The collection is finite if we want to consider its
realisation in a computer; however, we can treat the collection as often being
potentially infinite if we remain in the realm of mathematical semantics.)

The definition of a subclass imposes additional constraints upon the prop-
erties and behaviours of its superclass. Such a definition amounts to the spe-
cialisation of the superclass to suit the context of the newly defined subclass.
Specialisation requires that the superclass’s properties be made more restrictive
and its operations made applicable to fewer cases. The specialisation of a class
applies to fewer objects than does the class; specialisation serves to reduce the
number of possible (non-identical) instances that can be created.

This view of class derivation is purely logical. If we were to define it formally,
we would have to state that the class definition represents the intension of the
set of objects it defines, and the set of objects defined is the extension of the
class. This view entails that logical (mathematical) operations are applied to
the definitions of the properties in the superclass in order to derive those in
the subclass; similarly, operations are applied to the superclass’s operators.
(It is worth noting that inner and next-method are programming devices for
operating on class operations.)

This view of inheritance and specialisation is not the only one, however.
There are alternative views to this. Snyder [64] makes a number of distinctions
as to what constitutes inheritance and observes that the logical, specificational
view that I have just sketched, is but one of the possible interpretations. Of

88 4. Inheritance and Delegation

these interpretations, some are more stringent formally, some less so; the alter-
native that I will consider is purely pragmatic; the one just considered is one of
the most stringent. I will be relatively informal here because I will be returning
to the problems of inheritance below (Section 4.9).

The pragmatic view of inheritance is that it is code sharing. Inheritance
allows a subclass to share methods with its superclass. Thus, it permits the
sharing of the code defined for the superclass with the subclasses of that super-
class. Rather than defining new code for the subclass, we just arrange for it to
inherit the code it requires from its superclass. In a similar vein, we arrange for
a subclass to share all of the non-local variables used by each method; this must
be the case, otherwise the method would fail to function. Sharing of variables
that are class non-local to each method implies the sharing of the data slots
of the superclass. The reader should note the following. At the point where a
method is defined, either that method employs no class non-local variables—
that is, all of its variables either are defined within the method, or are its formal
parameters—or are variables that are global to the program in which the class
and its methods are defined. In the more common case, at the point of defini-
tion, a method references and updates variables that are defined as slots within
the body of the class to which the method definition belongs.

It should be remembered that some languages allow the user to restrict
the visibility of class slots. If a slot is invisible, it cannot be directly included
in any other construct or method. In some languages, as has been discussed,
it is possible to hide slots from the outside world and from subclasses. When
a method referencing or updating such a variable is inherited in a subclass,
the hidden variable is also shared by the subclass, but it is shared implicitly.
Equally, when a method is inherited, it is possible that the method is defined
in terms of other methods defined in the superclass, some of which are hidden
from view in some way. The method that the subclass shares must also share
the hidden methods. The sharing process is, thus, more complex than simply
setting a pointer to the thing that is to be shared.

It is important to note that the re-use of slots is not literal sharing (unless
the variable is of a kind similar to a CLOS or Smalltalk class variable, or a
C++ or Java static variable). It is, instead, a process of copying slot definitions
between class definitions. The reader can verify this assertion by means of a
simple experiment. For the implementation of a language with inheritance (and
for some accounts of its semantics, in particular its standard semantics), these
properties of inheritance must be taken into account. For most everyday cases,
inheritance can be considered as a kind of sharing.

The code-sharing interpretation of inheritance is attractive from the view-
point of modularity. Modularity is enhanced because methods and variables
from outside the inheritance chain are not introduced and code depends only

4.4 Inheritance as Code Sharing 89

upon those classes that are higher in the inheritance chain than its defining
class. Without those classes, its class cannot be defined so a maximal kind of
modularity can be enforced. Code sharing is also attractive when one wants
to reuse components. The programmer can tell where the definitions of the
components are, and all that one need do is to trace the inheritance chain back
to an ancestor in order to find the point of definition. Thus, in principle, reuse
by extension amounts to the inclusion of the classes in the inheritance chain
followed by some specialisation.

Sather is somewhat special as far as its class taxonomy is concerned. Sather
makes a firm distinction between subtyping and code sharing. In Sather, classes
declared as being abstract are permitted to have specialisations. A notational
device distinguishes an abstract class from a concrete one: the name of an
abstract class is prefixed by the dollar “$” symbol, while the name of a concrete
class has no such prefix. Class names, it is worth noting, are always spelled in
upper case (Sather is case-sensitive).

Abstract classes are defined in terms of method signatures and data slots.
Data slots can be marked as constant or as attributes (mutable slots). A method
in Sather can be a routine (which is a standard method) or an iterator (see
Chapter 2, Section 2.10). An abstract Sather class does not contain routine or
iterator bodies. A concrete Sather class is distinguished from abstract classes by
the fact that routine and iterator bodies are supplied. In other words, concrete
classes in Sather provide implementations for their methods.

Concrete classes can be instantiated in Sather. Abstract classes cannot be
instantiated.

When deriving one class from another, Sather provides two mechanisms.
The first is subclassing; the second is implementation sharing. In Sather, the
definition of a subclass is strictly associated with the definition of a subtype.
The subtype relation is denoted by the “¡” symbol (which is becoming some-
thing of a standard symbol, for it also appears in Theta [46] as well as in other
languages). Thus, in Sather, $A < $B denotes the fact that (abstract class)
type $A is a subtype of (abstract class) type $B. Where this relation holds, the
derived class ($A) is a subtype of $B.

The alternative is the sharing of implementation. This is only permitted for
concrete classes and is indicated by the includes relation. A concrete class is
an implementation of a type. If concrete class A includes concrete class B, A

shares its implementation with B in the sense that methods defined in B are
included in A. Hence, concrete class A is able to call the iterators and routines
defined in B, as well as accessing B’s constants and updating B’s attributes.

Implementation sharing does not mean that all methods must be taken
intact. It is possible to redefine a method defined in an included class.

90 4. Inheritance and Delegation

4.5 Single Inheritance

In Chapter 2, we saw that classes can be related by the superclass. The super-
class represents a more general version of the concept than do its subclasses;
subclasses represent specialisations of a general case. Inheritance gives more
specialised entities access to methods and properties that are general. Alterna-
tively, inheritance allows general properties to be inferred by more specialised
concepts. In practical terms, visible slots and methods can be inherited by sub-
classes from their superclasses. What makes the scenario presented in Chapter
2 special is that we restricted inheritance so that classes were permitted only
to have a single superclass.

Under single inheritance, a search for a method or a slot continues from an
instance of a class up along the superclass links until the root of the inheri-
tance tree is reached. If the required slot or method is located, the appropriate
operation is performed on it. If there is no such slot or method among the
superclasses of the caller, an error (often a compile-time error) is raised. It is
important to see that the search proceeds from an instance of a class through
the classes which form its superclass chain; the request for the slot or method
is initiated by an instance, not a class. Inheritance, as noted in the first para-
graph of this section, is a relationship between (or operation upon) classes, not
instances. Indeed, the whole area of inheritance, whether single or multiple,
deals with the relationships between classes. This is natural, for classes are
defined in terms of inheritance from more general models.

Although it is important to remember that instances are the objects with
which we deal at runtime, it is the class that defines the structure of its in-
stances. A class is, in a sense, only a template defining its instances.

The organisation of classes under inheritance is of considerable importance.
Under single inheritance, each class has only one superclass. On the other hand,
a class can have many subclasses. As a consequence, the classes that are defined
in terms of specialisation (subclass derivation) from a given class form a rooted
tree. This tree has an arbitrary branching factor because a class can have many
subclasses. However, there is a unique path from each class to its superclass
because a class can only have a single superclass.

In some languages, C++, for example, there is no most general class from
which all other classes are derived. The Java, Dylan and Eiffel languages, for
example, are languages which provide a most general class. In these languages,
it is advisable to make all user-defined classes subclasses of the most general
class so that the newly defined class can inherit methods to perform basic
operations. In Java, for example, the most general class is called Object. If
one does not derive a new class from Object or one of its subclasses, the new
class does not, for example, inherit the methods to perform serialisation (the

4.6 Calling More Abstract Methods 91

process of writing a class to an output stream and of reading one from an
input stream). If one does not specialise Dylan’s most general class, instance
allocation fails to work. When there is a single class that is the ancestor of all
other classes, user- or system-defined, the entire tree of classes is said to have
a single or unique root; the tree is rooted (every subtree of a tree is rooted by
definition, unless it is the empty tree).

In C++, there is no root class in the sense of most general class from
which all others inherit slots and methods. C++ programs are organised as
multiple trees, each of which is rooted, but each of which is disjoint from all
the others. A rooted tree in the sense we are considering, one with a system-
defined most general class, has the enormous advantage that downcasting allows
an instance of any class whatsoever to be bound to an argument or assigned to
a variable whose type is that of most general possible class. This feature makes
programming considerably easier in many cases and allows the definition of
generic functions without resorting to a template construct (as in C++) or the
introduction of generic types (as is done in Ada, for example).

Single inheritance is often powerful enough for the needs of a given program.
Single inheritance has the enormous advantage that it is simple, semantically
and operationally. However, it is sometimes argued, it lacks power and makes
the definition of some classes more difficult or ad hoc than necessary. An exam-
ple is the derivation of a class representing water-skiing accountants (which, as
we saw in the last chapter, is trivial to describe in a prototype-based language).
Under single inheritance, we would need to define a class representing accoun-
tants and then specialise it to produce one which adds the water-skiing hobby.
Under multiple inheritance, we combine the classes representing water-skiers
and accountants in order to produce the new class.

4.6 Calling More Abstract Methods

When defining a new method, it is very often the case that a new piece of code
is written. This code might be completely new and defined especially for the
needs of the new class. Other times, the code is written as a specialisation of
a method that appears further up the inheritance chain; in this case, when the
method is all new code, the behaviour of the method is totally new. However,
it is often the case that a new method can (indeed should) be defined in terms
of the behaviours of one or more methods higher in the inheritance chain and
which perform the same function. This occurs when the new method is to play
exactly the same role as the others and represents an extension to the behaviour
that is inherited. Rather than completely re-write such a method, it would be

92 4. Inheritance and Delegation

far better to reuse the existing methods. The ways in which methods can reuse
existing methods is the topic of this subsection.

One very common way to specialise a method is to perform some operations
before and after the operations represented by the more general method. If the
more general method’s operation is denoted by S, and the extensions we need
to make are A and B, then the method that we need to write is:

A;S;B

That is, we perform some operations prior to doing whatever the more general
method does, and then do some other things after the more general operations.
This arrangement is necessary when it is remembered that a specialisation,
a subclass in other words, contains more detail than its superclass. One kind
of operation that must be done before calling the more general method is to
arrange for the data to be of the right kind; equally, after the general operations
have been performed, it might be necessary to convert its result into a form
that conforms to that required by the subclass.

C++ provides a relatively general mechanism for accessing methods in
the superclass. This involves the use of the so-called scope-resolution opera-
tor which is written as two adjacent colons (“::”). The left-hand side of this
operator should either be left unbound, or should be bound to the name of a
class; the right-hand side is bound to a slot in the class named by the right-hand
side. When both sides are bound, as in C1 :: i, the expression is interpreted as
the slot i in class C1 (the operator is actually more general, so global variables
as well as slots in nested classes can be differentiated, but we are simplifying
matters here). If there is no such slot, a compile-time error is raised. This scope
operator allows methods in the superclass to be called. If C1 and C2 are classes
with C2 being the superclass of C1, and if both classes define a method m, then
if C2 :: (. . .) appears in the method m in C1, it is interpreted by the compiler
as a call to that method m defined in class C2 (in C1’s superclass, that is).

Smalltalk, LOOPS and Java provide a special method call to invoke methods
that are more general. This call, often called super, calls the next most general
method above the current one with the same name and the same number of
parameters (Java imposes the additional requirement that the types of the
parameters be the same). In Smalltalk, super functions in a way similar to
SELF: it is a receiver for a message, and, as such, is sent a normal message.
The SendSuper operation in LOOPS operates in a fashion similar to super in
Smalltalk. In Java, super is often used in constructors to call the constructor
of appropriate type in the superclass of the current class. Here, super takes the
form of a parity procedure call. In other contexts, super can be used as the
name of the immediate superclass and is written as a class prefix:

super.add1 (n);

4.6 Calling More Abstract Methods 93

This will call the method add1 in the superclass of the class in which the
method is being defined.

The next alternative we shall consider involves provision of a construct or
operation to call a higher method. The operation in question is often called
next-method or call-next-method when defined in a bottom-up fashion, and is
called inner when defined in a top-down one. The next-method, call-next-method
approach is adopted in Dylan and CLOS, respectively. The inner approach
derives from Simula67 and is used in Beta. I will consider next-method and
call-next-method first.

The operation of next-method and call-next-method are the same. I will
use next-method to stand for this operation simply because it is shorter. The
next-method operation takes no arguments and can occur in a method at any
point where it is legal for a procedure or function call to appear. The next-
method operation is a pseudo-call and stands for a call to another method.
The semantics of the operation are as follows. The arguments to the method
that calls next-method are supplied to next-method. The next-method operation
searches the inheritance chain of the class to which the calling method belongs
in an attempt to find another method with the same name and same parameters
at a point higher in the inheritance chain. In other words, next-method searches
for a more general version of the method being called. If such a method cannot
be located, an error results. If, however, there is such a method, it is called
using the arguments supplied to the original method and to the next-method
operation. If there is more than one method that is applicable (for the reason
that the method has been redefined in more than one subclass), the most
specific method is chosen for execution by next-method. The results produced
by the more general method (if any) are returned to the method that called
next-method. These results are then available for general use.

It can be seen that, when using a next-method approach, one defines general
methods in the same way in which one would define a procedure. Later, when
the need to reuse that method’s code is encountered lower in the inheritance
chain, next-method is there to call the most specific, more general method.

To make this clear, the following example is offered.
Let us assume that we need to define two queue types, one using the FIFO,

the other using the LIFO discipline. Let us assume that the implementation
language provides us with a list data type (either by having built-in lists or by
defining them in a library). We might start by defining the FIFO class thus:

define class FIFO

slot elems : LIST;

end class FIFO;

94 4. Inheritance and Delegation

We need to define an operation to add an element to the queue. We adopt the
generic functions approach to methods (the same as in Dylan and CLOS), and
so we write the method as:

method add_element (q : FIFO, x)

elems(q) := cons(x,elems(q))

end method;

In this case, we supply the queue to be operated upon as the first argument to
the method; this allows the method lookup process to determine the class for
which the method is defined. The second argument is to be bound to the object
to be added to the queue. The body of the method consists of a single line whose
effect is to update the queue elements by adding a new element to the front of
the queue. The notation elems(q) when denoting an l-value (left-hand side of
an assignment) denotes an operation which updates the slot elems of instance
q with the result of evaluating the right-hand side of the assignment. On the
right-hand side of the assignment, the instance of elems(q) serves to return the
value of the elems slot of the instance q. The function cons adds a new element
to the front of a list. (The assignment can be re-written as elems(q, cons (x,
elems(q))).)

When we come to write the LIFO class, we have very little to do, in fact. The
class definition is simple: we add no slots to the existing FIFO class. Equally,
the methods require little work. In order to minimise the work, we observe that
all LIFO operations can be performed on a FIFO provided that we reverse the
queue appropriately. In a LIFO queue, we add elements to the front and take
them off the front. In a FIFO, we add them to the back and remove them from
the front. To make a FIFO queue behave in this way, we need to reverse the
list representing its elements and add the element there; in order simply to
inherit the next element method from FIFO (thus avoiding the need to define
an operation for LIFO), we have to arrange for the elements to be in the correct
order–thus, we reverse the queue before exiting the add element method.

The addition operation is, then, simple to write:

method add_element(q : LIFO, x)

elems(q) := reverse(elems(q));

next-method;

elems(q) := reverse(elems(q));

end method;

where reverse is the function which (non-destructively) reverses the elements of
a list. We need to perform the first reverse because we want to put an element
onto the front of the queue. It has to be on the front of the queue if we are
to use the next element method without modification. We reverse the list a
second time so that the most recently added element is the first to be removed.

4.6 Calling More Abstract Methods 95

For reference, the next element method is:

method next_element (q : FIFO)

if (empty?(q)) then

nil

else

let elts := elems(q);

let nxt := hd(elts);

elems(q) := tl(elts);

nxt;

fi;

end method;

where nil denotes the empty list; hd is the function that returns the first
element of a list (the head); tl is the function which returns the list minus its
first element (the tail); the let construct introduces local variables; and finally,
empty? is the predicate which tells whether the queue has no elements (this is
a method defined for class FIFO and which can safely be inherited by LIFO).

We can allow LIFO directly to inherit next element if we employ the double
reverse in add element. Thus, along with empty?, we do not need to specialise
it to LIFO.

A second example comes from parallel programming. We might define a
class to represent a FIFO queue. Such a queue forms the basis of an inter-
process communications mechanism. It might be the case that the queue is
needed elsewhere in the program, but not in a way that involves parallelism. It
might just be easier to define and test the FIFO class as a piece of sequential
program. The semantics of the FIFO queue, in any case, are independent of
their operation as part of a parallel program, so defining the FIFO’s operations
without regard to parallelism makes good sense.

The FIFO class might include the following operations:

– test for emptiness (empty queue?(q));

– add a new element (add element(q,x));

– remove an element (next element(q));

where the names of the methods that implement the operations are shown in
brackets. The argument, q, refers to the FIFO queue and x is to be bound to
an object of the queue element type.

The implementation of these operations is relatively straightforward when
considering a sequential program. Now, the problem comes of altering these
operations (methods) so that they treat the queue data structure as a critical
region. Some languages provide tools for parallel programming; for example,
semaphores of some kind or monitors might be provided by the language. Java

96 4. Inheritance and Delegation

provides monitors and a synchronised construct that implements critical re-
gions; Dylan, in the Mindy and Gwydion implementations from Carnegie Mel-
lon, provides semaphores and events. It is necessary to assume that the object-
oriented language used to implement the shared queue provides semaphores and
the wait, and release operations over them. (The two operations acquire and
release, respectively, the semaphore which they mention as their argument.)

We can now specialise the FIFO queue class. We redefine the class by adding
a slot to hold the semaphore controlling access to the queue data structure. We
also re-write the methods using next-method. For example, we can redefine the
add method as something like:

method add_element (q: SharedFIFO,x) is

wait (q.sema);

next-method;

release (q.sema);

end method;

where q.sema denotes the semaphore that must be defined when the FIFO
class is specialised; it is the semaphore that controls access to the queue data
structure.

What happens in this revised version of the add element method is the
following. First, the method is called and its arguments are bound to an instance
of the SharedFIFO class and to the object to be added to the queue (note that
here we are assuming that methods are multi-methods as in CLOS and Dylan).
Next, the method waits on the semaphore, q.sema, until the semaphore allows
access to the queue data structure. When given access, next-method is called.
This implicitly passes all the arguments of the method to the next appropriate
method in SharedFIFO’s inheritance chain, which we assume is the add element
method defined for the sequential FIFO class. This call performs the operations
required to add an element to the back of the queue. Next, control passes to
the call to release the local semaphore to allow other processes access to the
shared queue.

The alternative view is the top-down one. This view employs a syntactic
construct spelled inner to stand for the code represented by a more specialised
method. The process of method definition is now almost reversed. The inner
construct is inserted into the code of a method defined in a class that will
become the superclass of the other classes to be defined. The inner construct
serves as a placeholder for code that will be supplied by methods that are more
specific. In the method in which it is defined, inner is a no-op, so the following
sequence of statements:

S1; inner; S2

4.6 Calling More Abstract Methods 97

when executed in the method containing it, will have exactly the same effect
as:

S1; s2;

However, if we define a method belonging to a subclass and we write:

inner: S3; S4;

the effect will be to execute the inner statements in the context of the inner
construct. In other words, the inner statement that appears in the subclasss
method will be executed thus:

S1; S3; S4; 82;

That is, the inner statement is, in effect, inserted in the superclasss method
at the point where the keyword inner occurs. Therefore, any inner statements
are executed between the statements that appear on either side of the inner

statement in the superclasss method.
The inner statement provides a way of wrapping more code that is more

general around code that is more specific. In particular, it allows many state-
ments to be so wrapped because each subclass can provide its own inner state-
ment as appropriate (including no inner statements). The effect of inner is
exactly dual to next-method. It also plays the same role. However, with inner,
one must define a superclass method in such a way that inner statements lower
down the inheritance chain can be correctly executed. In our shared FIFO ex-
ample, this would lead us to define a shared object and then define a shared
queue as a subclass. Similarly, the order in which we defined the FIFO and
LIFO queues in the first example would need to be reversed.

Some languages, CLOS in particular, go even further than allowing inner or
next-method techniques for method construction. CLOS, for example, defines a
set of method-combining forms. The idea is that a method can be distributed
across the inheritance hierarchy with contributions being made at different
points and in different superclasses. Method combining forms in CLOS are
derived from earlier efforts at automatically providing methods and parts of
methods that could be combined to form complete methods. In CLOS, method
combiners are methods which are inherited in the normal way, but which specify
when they should be executed. The result is a complex method that is composed
of elements taken from different classes in its superclass structure.

C++ also supports renaming. Renaming is performed using the “scope op-
erator” (spelled “::”). This is the infix operator that is used in the definition
of methods (it is also the same construct that is used to make calls to a su-
perclass). The left-hand operator is a class name and the right-hand one is the
method (or slot) name. If the left-hand operand is omitted, the scope is taken

98 4. Inheritance and Delegation

to be the most global possible. It makes qualified renaming possible as a mech-
anism for inheritance; however, such a move can be defeated by the standard
inheritance mechanism, so great care must be taken when using it.

Finally, it is necessary to observe that some languages (Java and Eiffel, for
example) contain constructs which inhibit redefinition under inheritance. That
is, it is possible to prevent users from redefining a slot. In Java, a slot that
cannot be redefined is marked as final; in Eiffel, it is marked as frozen. For
example, in Java, the definition:

final private int importantConstant = 2.5;

declares an integer variable that cannot be updated. Similarly,

final int add1 (int x){ return(x + 1); }

declares a method that cannot be redefined in a subclass. The same effects can
be had in Eiffel with:

frozen importantConstant : Integer is 2.5

and:

frozen add1 (x : Integer) is

do

Result := x + 1

end

with, again, the intent that neither the data nor the method slot can be re-
defined in a subclass of the one in which the definitions appear.

When a language incorporates multiple inheritance without some kind of
linearisation (see below, Section 4.12), the call-next-method operation leads
one into problems for, as will be seen, it is an open question as to which
method is the “next” in the inheritance structure. The inner statement is in a
slightly better position, given that it operates top-down. Here, an extension to
the semantics of the inner statement will be necessary to cater for the case in
which the inherited method does not have an inner statement in its body.

4.7 Multiple Inheritance

Single inheritance has been found to be a powerful mechanism for constructing
programs. Sometimes, single inheritance is insufficient and enforces ad hoc so-
lutions upon the programmer. For example, if we have a class for accountants
and one for water-skiers, the combination of the two under single inheritance

4.7 Multiple Inheritance 99

requires that we specialise one of these classes, say the one representing accoun-
tants, and define a slot to hold an instance of the water-skier class. In many
ways, this is not what we want, nor what we intend. If we think in terms of
sets, what we require is the intersection of those people who are accountants
and those who engage in water-skiing:

Accountants ∩ Waterskiers

If the solution described in the last paragraph is adopted, the result is different
from the above set expression. It makes the water-skiing aspect a part of the
new class. (Of course, it could be argued that being a water-skier is just a
perspective, an aspect, of a person, just as their profession is a perspective–I will
consider this below.) It can be argued that the solution involving the creation
of a new slot to hold an instance of a class does not have the appropriate
semantics, and for this reason alternative solutions were sought.

The problem of representing those people who are both accountants and
water-skiers immediately suggests that the new entity should have two super-
classes, not one. Other examples include the definition of a class to represent a
digital meter (a visual component that shows a numerical quantity and a slide
whose length represents that value) as a subclass of a numerical display and
a meter class (see [68]); both the numerical display and the meter are defined
in terms of (are subclasses of) a class representing a gauge. The gauge class
is, itself, a subclass of a window class. In a representation of the kinds of food
that one finds in a supermarket, it would be necessary to represent fruit and
vegetables in ways that respect the fact that they are perishable; that is, for
each of these types of food, there is a date after which they are to be considered
to be no longer edible. To make this representation, it appears useful to define a
Foodstuff class whose immediate subclasses are Vegetable and Fruit ; the Food-
stuff class might contain a representation of the unit cost of foods. In addition,
we might care to introduce a PerishableCommodity class which contains a date
(representing the date by which the commodity must be consumed). The Fruit
and Vegetable classes will be subclasses of the PerishableCommodity class, as
well as of Foodstuff. We have another example of multiple inheritance (this
example is also due to [68]).

Therefore, the concept of multiple inheritance was introduced into object-
oriented programming languages. Early languages that used multiple inheri-
tance were FLAVORS [20] and then LOOPS [14]; more recently, Eiffel [53] and
its derivative, Sather [60, 61], as well as C++ [74], and a number of less–known
languages, have employed multiple inheritance.

As its name suggests, multiple inheritance means inheritance from more
than one superclass. In a language that supports single inheritance, a class can
have zero or exactly one superclass. It has zero superclasses if it is a root class,

100 4. Inheritance and Delegation

and one superclass if it is an interior or leaf class. Under multiple inheritance,
each class can have zero or more superclasses. Again, if a class is a root of the
inheritance graph, it has zero superclasses, while an interior class has one or
more superclasses.

Before moving on, it is necessary to observe that we will concentrate below
on the problem of finding or inheriting a single entity, a slot or a method, from
an inheritance structure using some kind of multiple inheritance. Although this
is the most usual case, it is sometimes useful to be able to perform an operation
on all ancestor classes, whether direct or indirect. To our knowledge, the only
language to permit this and to support it adequately, was LOOPS [14] using
its send superfringe operation. The operation is possible in C++ or Eiffel (see
[53] for more information), or in any language that permits explicit naming of
superclasses, and more particularly in those languages that permit the unique
naming of all slots and methods. With a renaming operation, it is still necessary
to assemble a sequence of the names upon which to operate or which are to
be called; this must usually be done when the program is written, so dynamic
performance of this kind of operation is not usually possible.

4.8 Multiple Inheritance Graph Shape

When a class has just one superclass, multiple inheritance reduces to simple
inheritance. When, on the other hand, a class has more than one superclass,
some slots will be defined specially for it as part of the derivation (specialisa-
tion) process, but it also inherits slots from each of its superclasses. Thus, a
slot can be new to the class or can be inherited from a superclass. As a conse-
quence, the inheritance structure in each case has a different topology. Under
simple inheritance, the inheritance structure takes the form of a tree. The root
of the tree corresponds to the most general class from which all others are de-
rived. Under multiple inheritance, on the other hand, the inheritance structure
is often described as a lattice or, more generally, as a rooted DAG (directed
acyclic graph). When viewed as a graph, multiple inheritance structures might
have more than one distinguished node (root), each corresponding to the most
general classes. Sometimes the structure is organised so that there is a single
most general class (as it is in Eiffel and Dylan, for example) which is defined
by the language.

In general, there are always two ways to view an inheritance structure. The
first is to look at the structure generated by all defined classes (be they system-
defined or otherwise), while the second is based upon the structure that pertains
to a class that is located somewhere in the inheritance structure. Thus, under

4.8 Multiple Inheritance Graph Shape 101

single inheritance, the class-centred view reveals a chain or linear sequence. The
DAG or lattice that is induced by the multiple inheritance relation can also be
represented as a tree whose root is a particular non-root (interior or leaf) class;
when viewed this way, one sees the superclasses of the class in question; when
a class appears as the intersection of two or more paths through the structure
from the designated class, it will appear in as many branches of the tree as there
are paths to it. This multiple representation of a single class can be thought of
as a form of colouring of the inheritance graph.

Figure 4.2 An inheritance lattice.

Inheritance structures are used to find entities that are defined in more
general classes. A search through the inheritance structure, be it a single or
multiple inheritance structure, must be performed in order to find slots and
methods that are not defined locally. This search poses problems for multiple
inheritance because there can be more than one path from a class to the place
where a slot or method is defined. This is shown in Figure 4.2.

Because a class often has more than one superclass, it can be seen that
the search has a much more complex structure than is the case with single
inheritance. At each branch point (superclass), a decision has to be made as to
which path next to follow (see Figure 4.3).

102 4. Inheritance and Delegation

Figure 4.3 Decision as to which path to follow.

A decision as to which path to follow next naturally leaves some paths un-
explored. Since we cannot know a priori on which branch a slot will appear, we
must search the lattice exhaustively until either the slot is found or all super-
classes have been examined. An exhaustive search implies that every branch
must be visited in the search. This implies some systematic method for search-
ing the graph, which, in turn, implies that at each decision point, either the
unexplored alternatives are recorded so that they can later be explored, or the
graph is re-ordered in some way so that the nodes (superclasses) are put into
some canonical order.

At this point, we encounter a central problem with multiple inheritance:
we need to decide how to search the inheritance lattice. As will be seen, there
are different methods for performing an exhaustive search and the choice as
to which to employ has proved controversial. Different methods visit nodes in
different orders, so the behaviour of multiple inheritance will vary depending
upon the method adopted. This means that a slot that will be found early by
one search algorithm might not be found until much later by another. This
leads to the problem that one search algorithm, by finding one instance of a
method, say, early on, can mask off, or render invisible, another instance of
that method. This can have the consequence that, say, a relatively specialised
method will not be found because a more general one has been encountered
along another path through the inheritance structure. This property has the

4.8 Multiple Inheritance Graph Shape 103

consequence that different methods will be returned and, therefore, different
computations will be performed–the meaning of the program can be altered by
the search algorithm; moreover, the search algorithm is essential in determining
the correctness of programs.

One way out of this problem is to give up the idea that algorithms should be
portable from one language to another, so programs must be re-written when
moved from one language to another, particularly to a language that uses a
different search algorithm or technique.

When two objects in the inheritance structure have the same name, they
are said to clash. An alternative is simply to make clashes illegal. That is, when
the compiler detects a conflict, it flags an error and terminates. This is a weak
suggestion, for obvious reasons.

A second alternative is to permit qualified message passing or to allow re-
naming. Qualified message passing (a more general form of renaming) qualifies
the inherited slot or methods name with the name of the class in which it is
defined. When this is employed, all names become unique. Thus, it becomes
possible to designate each slot or method uniquely; a name becomes available
with which to refer to that entity. When potential name clashes occur, they
can be resolved by renaming one of the inherited entities, an operation that
can be done locally, not in the superclass where the entity is defined.

A rather more far-reaching problem occurs when there is more than one
path from a given class to one of its superclasses. A simple form of this is
shown in Figure 4.4.

Figure 4.4 A common root.

This is called a common root. Let us assume that we are seeking to inherit
a slot (or a method) from the class that is a common root. If we employ a
search that traverses all paths from the leaf to the common root, there will
be as many copies of the desired slot as there are paths from the leaf to the
common root. In the case of the example shown in Figure 4.4, there will be two
copies of the desired slot, one for each path. Very often, only one copy of the
slot is desired, for example in the case of incrementing the value of the slot by

104 4. Inheritance and Delegation

one. If we have k copies of the slot, it will be incremented k times unless we
are careful to ensure that only one copy is actually modified; being careful in
this way requires some semantic support from the language, and this support
might not be forthcoming.

The problem of common roots arises in two forms. The first, and most
obvious one, is that a subgraph contains more than one path to a single root
node, as shown in Figure 4.5. In that figure, we have a collection of classes
which are related by the subclass relation and eventually are rooted in a single
class (F). A root class is a source of slots that are inherited by its subclasses.

Figure 4.5 Another common root.

Here, the common root is an interior node (F) which also inherits from
some superclasses. Comparison of these two cases immediately suggests that
the common roots problem is one that is recursively defined.

Let us consider again the lattice in Figure 4.4, assuming that class F defines
slot s. If we consider class A, there are two paths from it to the root class, F :
A, D, F and A, E, F . We can compare this with the situation depicted in
Figure 4.4; here, A, D, E, F form a diamond, as do B, D, E and F ; each is a
simple case of a common root. Now consider node B. Assume that F defines a
slot s. There are two paths from B to F : B, D, F ; and B, E, F . If we employ
a simple-minded inheritance algorithm, the first case will yield two copies of s

for inclusion in A, while the second will also yield two copies of s for inclusion
in B. In each case, the subclass (A or B) only requires a single copy of s.

Multiple inheritance can, therefore, lead to the replication of inherited slots.
Duplicates must be handled in some meaningful way. The problem of common
roots has been given different names over the years. Bobrow and Stefik [14] refer
to it as the “up-to-joins” problem, while Meyer [53] refers to it as “repeated
inheritance”. I have called it the “common roots” problem because it results
from different subgraphs having a common root node. If we consider the lattice

4.8 Multiple Inheritance Graph Shape 105

shown in Figure 4.5, we can see an additional complication: that of determining
when a common root is encountered.

We must consider the effect of superclass ordering in the superclass spec-
ification of a particular class. The question is whether an ordering should be
taken into account, or whether it should be ignored; furthermore, a decision has
to be made as to whether duplications in the superclass list should be consid-
ered significant or a typographical error. The reason for asking these questions
is that, as noted above, different search algorithms can visit nodes in the in-
heritance lattice in different orders. If the search can be influenced by starting
it at a particular point, the order in which nodes are visited can be influenced.
If one superclass is guaranteed to be searched before another, its superclasses
will be visited before those of the remainder, so any slots known to be in that
subgraph will be found before slots elsewhere (including similar or identical
slots). By this means, one can arrange for a particular slot to be encountered
before any others.

The problem with this approach is that it is highly sensitive to modifications
to the inheritance lattice. If the desired slot is moved to another subgraph, it
will not be encountered as expected; if the class containing the slot is moved
or a new class is placed in the path to that class, the slot might not be found
as expected due to the delaying nature of the inheritance algorithm. This is
where unique names would be of considerable utility. Languages like CLOS [65]
take into account the order in which superclasses appear in a classs superclass
list; other languages, like Eiffel, do not. From the example in [74], (p. 204), it
is stated that “the compiler detects name clashes resulting from using a name
defined in more than one base class [superclass]. This implies that unless there
actually is an ambiguous use the programmer need not do anything to resolve
it”.

Figure 4.6 An inheritance lattice.

106 4. Inheritance and Delegation

4.9 Approaches to Multiple Inheritance

We have seen that the class structure above a given class takes the form of a
lattice, not a chain. Globally, the relationship between classes is also a lattice,
whereas single inheritance imposes a tree structure. We can see the lattice
structure in Figure 4.6.

However, we can view this lattice above a given class as a tree as shown in
Figure 4.7.

Comparison of these two figures shows that it is possible to transform a
lattice into a tree (or that a lattice contains a tree-like local structure). Conse-
quently, we have three fundamental approaches to finding a slot or method in
a multiple inheritance lattice:

– extract the appropriate (local) tree and operate on that (tree inheritance);

– consider the structure as a graph and operate on that (graph inheritance);

– tackle the lattice directly, enumerating its nodes and imposing some linear
ordering upon them (linearised inheritance).

Figure 4.7 An inheritance tree within a lattice.

4.10 Tree Inheritance

Tree inheritance involves labelling nodes when conflicts arise. This makes it
possible for a class to inherit more than one copy of a slot or method, but
under different names. As a consequence, a renaming operation is required. This
approach is called tree inheritance. This corresponds exactly to the view of the
inheritance structure that decomposes it into a number of trees with coloured
nodes. Thus, each parent of each class will define a completely separate set of

4.10 Tree Inheritance 107

inherited slots (instance variables in particular); if a slot can be reached via a
number of paths through the inheritance structure, there will be a separate set
of slots for each path.

Unfortunately, tree inheritance radically alters the semantics of inheritance
in the presence of shared nodes. Shared ancestors often arise when inheriting
multiple classes which are all intended to be instantiated (are complete, in some
sense). An alternative would be to define a set of complete classes and one or
more mixin classes (mixin classes are discussed below, but, for now, they can
be thought of as classes that define a set of operations that are related to one
particular feature and are designed only to be inherited from).

The problem, in essence, is that parents are duplicated. This is Snyder’s
[64] undesirable duplicate parent operation invocation problem. Consider the
case of the classes Point, HistoryPoint and BoundedPoint. Instances of Point
can be moved (they have slots denoting their x and y co–ordinates). Instances
of HistoryPoint record all movements of the point, and instances of Bounded-
Point can only be moved within certain boundaries. The problem is to define a
point which is bounded and which records its position. Clearly, we can engage
in multiple inheritance and make BoundedHistoryPoint a subclass of Bounded-
Point and HistoryPoint. The new class will inherit a move method from both
parents. This implies that, should both methods be executed, two updates of
the x and y co–ordinates will be effected. The two superclasses cannot be suffi-
ciently combined to form the required point using tree- or graph-based multiple
inheritance. (Renaming one of the two move methods is a non-solution, note.)
Linearised inheritance works very well with this problem; indeed, it works bet-
ter than does graph inheritance.

Tree multiple inheritance is an approach that deliberately introduces name
clashes. It is concerned with solving the problem raised by the diamond dia-
gram. Graph multiple inheritance works by exposing the structure of inheri-
tance; tree multiple inheritance exploits the issues raised by taking exactly the
opposite decisions about naming and conflict.

In tree multiple inheritance, the graph is transformed, as it is in linearised
inheritance. In the derived tree, there is a path from the class doing the in-
heriting to the root for each branch coming from the bottom class (the one
doing the inheriting). This involves duplicating some nodes. From this point,
all name clashes are treated as equals. No name clashes can occur from slots
that are inherited along different paths for the reason that all ancestors in paths
that have joins are already duplicated. This solves the encapsulation problems
of both graph and linearised inheritance. However, in some examples, in par-
ticular where exactly one instance of a property only makes sense for a class,
tree inheritance does not work well (it leads to a duplication); it needs to be
augmented by a unique naming scheme (see the case of Eiffel below).

108 4. Inheritance and Delegation

4.11 Graph Inheritance

The second approach is called graph inheritance. It consists of searching the
inheritance graph somehow and resolving conflicts in some way. Neither the
search nor the conflict resolution methods are specified. Tree inheritance suffers
from a number of problems, as we have noted. Here, we add the additional
problem of graph inheritance that it exposes the inheritance structure. The
concept of encapsulation implies that the way in which a class is ultimately
derived should not be visible; only the immediate superclasses should be visible
to a class; it should not be necessary, or possible, to examine the superclasses of
each of these superclasses (i.e., the set of ancestors). Consider the “diamond”
diagram (Figure 4.8) showing repeated inheritance. If S1 defines exactly those
slots that are in A for itself (i.e., within its own visibility area), any side effects
on those slots will be invisible to S2. If S1 merely inherits all those slots, all
side effects will become visible to S2. The structure of inheritance is exposed
to subclasses.

Figure 4.8 A diamond inheritance shape.

Special-purpose methods are used to resolve conflicts. One of these is to re-
define the inherited operation in the child class (this is a method recommended
by Lipmann [48]); the definition in the child class can invoke the operations
defined by the parent classes (using a unique naming scheme, for example).
To invoke all the definitions of an operation in the inheritance graph, each
class can define an operation invoking the operation on each of its parents and
then perform any local computation. The result is a depth-first traversal of the
graph.

The problem with graph inheritance is that it exposes the inheritance struc-
ture of the graph. This violates the concept of encapsulation of classes. Such
exposure tends to occur not when there are duplicate operations, but when it
is a tree. In many languages supporting graph inheritance, there is only one
set of instance variables (instance slots) instantiated for each ancestor class, re-
gardless of the number of paths by which the class can be reached. This result

4.11 Graph Inheritance 109

is usually desirable, but it can introduce problems. For example, in the above
example, depth-first traversal with merging was employed, but this can result
in some operations being invoked more than once on the same set of instance
variables. Consequently, a designer cannot change the use of inheritance within
a class without risking breaking some descendant class.

Let us consider the tree structure shown in Figure 4.7. Let us assume that
operation o is defined by classes z, y2 and x, where the definition of o in x

invokes o on both parents. Assume, further, that the designer of class y2 decides
to reimplement it to inherit from z in such a way as to preserve the external
behaviour of objects of class y2. Also, assume that y2 will either inherit o from
z or will revise its definition of o to invoke the o defined by z. Operation o in
class x will now have the effect of invoking o on class z twice, and on the same
set of instance variables (instance slots); if o has side-effects, this might not be
a desirable outcome.

In this example, it can be seen that a change in the inheritance structure
by a class (y2) breaks one of its client (inheriting) classes (x). This occurs even
though the operations have the same external behaviour. The use of inheritance
is therefore exposed to inheriting client classes.

Trellis/Owl [62] signals an error at compile time when a class attempts to
inherit an operation from more than one parent. It is an error for a class to
inherit operations with the same name from two or more parents only if the
operations are actually different (cf. the account of inheritance in Eiffel, below).

The error is a problem because it exposes the inheritance structure to client
(sub-)classes. A further example will be useful. Consider the diamond graph in
Figure 4.6. If an operation o is defined only by class z, it will be inherited by
y1 and y2 and then by x; this will cause no error. Now, assume that class y2

is reimplemented so that it no longer inherits from z (see Figure 4.7) but still
supports the same behaviour. Class x will now be in error for it inherits two
different operations named o, one from z via y1, the other from class y2. (The
operations are different but have equivalent behaviour on objects of their re-
spective classes.) So, the change to class y2 to stop inheriting from z was visible
to x, a client of class y2, even though the external interface of instances of y2

remains unchanged (the instances have the same externally visible behaviour).
Exposure of the inheritance structure is not always desirable. When this is

the case, the same operation exception in the conflict rule must be dropped.
This suggests that ad hoc solutions must be employed.

110 4. Inheritance and Delegation

4.12 Linearised Inheritance

Linearised inheritance is a mechanism which first flattens the inheritance struc-
ture into a linear chain without duplicates and then searches this chain in order
to find slots (a process equivalent to single inheritance).

With linearised inheritance, the order in which the linearisation algorithm
encounters superclasses is important. In the case of CLOS, which we will con-
sider in detail below, the programmer can set the order in which direct su-
perclasses appear in a class. This makes the inheritance algorithm select one,
rather than any other, conflicting slot. In the case of Figure 4.8, if both S1 and
S2 define a slot or method x, one or other will be selected according to the
superclass order; the other is masked off by the inheritance algorithm. Without
additional information, it is impossible to say which x is the correct one, so,
in the absence of such information, we must consider them equally good. The
choice between them is therefore arbitrary.

A related problem is that inheriting classes are not guaranteed communi-
cation with their direct ancestors. The linearisation algorithm can insert unre-
lated classes between an inheriting class and one of its direct ancestors. If the
inheritance order produced by the linearisation algorithm is B − S1 − S2 − A,
B cannot directly communicate with S2; equally, S1 cannot communicate di-
rectly with A. An implication of this is that there is no way to combine slots;
at any point in the linearised graph, there is only one slot that is visible. It is
for this reason that CLOS provides such a wide variety of method combining
constructs. Method combination does not replace the need for a class to be
able to communicate reliably with its direct ancestors.

Inheritance involves a search for slots (and methods). We need, therefore, an
algorithm that will give us access to all the superclasses of an input class. Access
to the classes should represent a consistent way of accessing those superclasses.
The simplest approach to searching the space of superclasses is to linearise
their graph and then remove duplicates from one end or other of the resulting
sequence.

The simplest of the ways employs a depth-first (or pre-order) traversal.
The idea is that we want to visit each node in the inheritance lattice just once
and in a particular order, as we put each node (class) into a list when we visit
it. Once we have collected all the nodes, we can remove all duplicate references.
When we encounter a node, we place it in the list of visited nodes. We need to
keep track of the nodes that we have visited, but we allow a node with an out
degree greater than one to appear more than once in a visited list. We then
take the leftmost path, keeping the others until later. When all the nodes in
the leftmost subgraph have been visited, they will be present in the node list.
When a subgraph has been visited, the next leftmost subgraph is visited, its

4.12 Linearised Inheritance 111

nodes being placed in the list. When the last path out of the root node (the
class whose superclasses we are trying to find) has been traversed, we have a
complete list of all of that class’s superclasses. This list can contain duplicates.

Once we have produced a list of superclasses, we need to decide how we
want to remove the duplicate class references it contains. There are two ways:

– remove duplicates from the front, or

– remove them from the end.

The first alternative works as follows. Begin with the start of the list. If
the first element occurs later in the list, remove those later copies. Continue
until all duplicates have been removed. The second works in a dual fashion:
start with the end and remove those elements which have duplicates earlier in
the list. (Duplicate removal can occur as part of the visiting phase, but it is
easier to describe it as a two-phase process.) FLAVORS [20] employed a depth-
first search combined with removal from the end, while LOOPS [14] used a
depth-first search with duplicates removed from the start of the superclass list.
Neither the FLAVORS nor the LOOPS approach is completely adequate.

Linearised inheritance is a relatively old technique, so it is relatively well
understood. However, although it is used in CLOS, and still, therefore, has
currency, it suffers from a number of problems.

First, the linearisation process inserts unrelated classes between related ones
in the sorted superclass chain. This has the disadvantage that the “effective
parent” of a class might be a class of whose existence the programmer is totally
unaware. This has the consequence that, for example, iteration over ancestors
can generate unexpected results.

Secondly, and related to the first problem, is the problem that an entity
that is derived through inheritance might be known to be sub-optimal. The
optimal entity might be in a part of the class chain that is made inaccessible
by an inserted class that contains an entity with the same name, the suboptimal
entity. When the search order can be influenced, as it can in CLOS, there can
be some measure of control; however, even when search can be influenced, the
order in which duplicates are removed can still intervene and remove an optimal
selection from the linearised class chain.

Finally, communication with “real” parents is very hard to establish. The
reason for this is, again, that extraneous classes can be inserted into the lin-
earised class chain between the “real” parents. The additional, inserted, classes
appear to be parents of the one from which the superchain was generated, but
they come from regions of the inheritance graph that are not strongly con-
nected with the originator class. Thus, when engaging in a search along the
parent chain, a query might be satisfied by a class other than a genuine parent
of the class from which the search started (assuming a reflexive superclass re-

112 4. Inheritance and Delegation

lation). The send super operation and method combination mechanisms were
introduced in order to support communication with “real” parents.

4.13 Implemented Multiple Inheritance
Techniques

4.13.1 The CLOS Search Method

The CLOS extension to Common LISP defines a specific method for inheriting
slots ([65], Chapter 28). This same method is used in Dylan [6]. The algorithm
is complex, but avoids the problems described above and that can sometimes
arise with depth-first searches. The algorithm is explained in Chapter 28, Sec-
tion 1.5 of [65] (pp. 782–784) and in [30]. I repeat it here almost verbatim
(with explanation as appropriate). The algorithm works by producing a list of
superclasses that is then ordered. It is noteworthy because it is a sophisticated
version of a linearised inheritance technique, but one that makes the problem
with joins somewhat easier to handle. I present the algorithm in detail in order
to show the reader how complex these things can become.

First, we observe that a class together with a list of its immediate super-
classes (those mentioned in the superclass list or specification that forms part
of its textual definition) forms a total ordering and is called the local prece-
dence list. It is a total ordering because a search for a CLOS slot will begin
with the class and then move along the class list from left to right (the order
of the superclasses in the list is arbitrary, but they must be ordered somehow,
simply because text is linear). The class precedence list for a class C is a total
ordering on C and its superclasses that is consistent with the local precedence
orders for C and each of its superclasses. In other words, for each class S that
is in a superclass of C, the class precedence list respects the ordering induced
by the local precedence list of each S.

In the class precedence list, a class precedes its direct (immediate) super-
classes and a direct superclass precedes all other direct superclasses specified
to its right in the superclass list in the class’s textual definition. For every class
C, define:

RC = {(C,C1), (C1, C2), . . . , (Cn−1, Cn)}
where C1, . . . , Cn are the direct superclasses of C in the order in which they
appear in the textual definition of the class C.

Let SC denote the set of C and its superclasses, and let R be defined as:

R =
⋃

c∈SC

RC

4.13 Implemented Multiple Inheritance Techniques 113

A partial ordering might or might not be generated by R; this depends upon
whether the RC , c ∈ SC are consistent. It is assumed that they are consistent
and that R generates a partial ordering. When the Rc are not consistent, R is
inconsistent.

To compute the class precedence list for C, it is necessary to use a topolog-
ical sort on the elements of SC with respect to the partial ordering generated
by R. When the topological sort must select a class from a set of two or more
classes, none of which is preceded by other classes with respect to R, the class
selected is chosen deterministically, as described below. If R is inconsistent, an
error condition is raised.

Topological sorting works by finding a class C in SC such that no other class
precedes that element according to the elements in R. The class C is placed
first in the result. Remove C from SC , and remove all pairs of the form (C,D),
D ∈ SC , from R. Repeat the process, adding classes with no predecessors to
the end of the result. Stop when no elements can be found with no predecessor.

If SC is not empty and the process has stopped, the set R is inconsistent. If
every class in the finite set of classes is preceded by another, then R contains
a loop.

Let {N1, . . . , Nm}, m ≥ 2, be the classes from SC with no predecessors. Let
(C1, . . . , Cn), n ≥ 1, be the class precedence list thus far constructed. Class C1

is the most specific class, and Cn is the least specific. Let 1 ≤ j ≤ n be the
greatest number such that there exists some i where 1 ≤ i ≤ m, and Ni is a
direct superclass of Cj ; Ni is placed next.

This rule selects from a set of classes with no predecessors. Its effect is that
classes in a simple superclass chain are adjacent in the class precedence list
and that classes in each relatively separated subgraph are adjacent in the class
precedence list. For example, let T1 and T2 be subgraphs whose only common
element is the class j. Suppose that no superclass of j appears in either T1

or T2. Let C1 be the bottom of T1; let C2 be the bottom of T2. Suppose that
C is a class whose direct superclasses are C1 and C2 in that order. The class
precedence list of C will start with C and will be followed by all classes in T1

except j. All the classes in T2 follow next. Class j and its superclasses appear
last.

Like the depth-first enumerations, this algorithm involves some knowledge
of how the inheritance lattice is structured. This is typical of many multiple
inheritance algorithms, but it also requires that the programmer be aware of
how the algorithm works. This is a burden on the programmer, except in the
simplest cases.

114 4. Inheritance and Delegation

4.13.2 Multiple Inheritance in C++

C++ [74] also recognises the problem of repeated inheritance. The solution
adopted in C++ is to introduce a new kind of superclass, the virtual superclass.
Before this introduction, C++ already supports different kinds of superclass:
public, protected and private. The intention behind this division is the restric-
tion in visibility of the superclass’s public slots (method and data members, in
C++ parlance). With a public superclass, all of its public slots are public in the
subclass; with a protected superclass, inherited public slots become protected
in the subclass, and similarly for private superclasses.

When a superclass is marked as being virtual, the compiler is instructed
to use only one copy of the named superclass. The virtual annotation can be
combined with the public, protected and private annotations and has the same
effect in terms of visibility. However, a virtual annotation ensures that, no
matter what the visibility of the public slots of the virtual superclass, only
one copy of them will appear in the subclass being defined or in any of its
subclasses.

In fact, the story is not quite as simple as the last paragraph would suggest,
for what really happens is that a class which is a direct subclass of a class that
will be repeated must mark that superclass as virtual. This can be made clearer
with a diagram (see Figure 4.9).

Figure 4.9 Diamond inheritance structure–shared super.

In the figure, class X inherits from classes Y1 and Y2. Classes Y1 and Y2

have class X as their superclass. Class X is, therefore, a shared superclass. If
inheritance worked in the normal way, slots in X would be duplicated. However,
in C++, if classes Y1 and Y2 mark X as a virtual superclass, only one copy will
be inherited. C++ forces the programmer to recognise that a superclass will
be repeated when its immediate subclasses are defined. If this is not done, the
programmer must, at some later stage, return to those classes and identify the
shared superclass. This clearly requires good documentation.

4.13 Implemented Multiple Inheritance Techniques 115

The above strategies can be combined with the “scope resolution” operator
(the “::”) operator. Although nothing is stated in [74], it would appear that
C++ employs graph inheritance combined with renaming.

4.13.3 Multiple Inheritance in Eiffel

The Eiffel language [53] permits multiple inheritance. The approach to multiple
inheritance that is employed in Eiffel is different from those we have previously
seen. Rather than demanding that the inheritance process find exactly one
instance of a slot or method (a “feature” in Eiffel parlance), the language
permits multiple copies of a feature to be returned. There are, according to
Meyer [53], two cases that must be addressed:

“Depending upon the context, either solution may be the right one, and
you will need some leeway for choosing between them in any particular case:

1. In some circumstances you may use repeated inheritance precisely because
you like a feature of an ancestor so much that you want two of it.

2. Often, however, one copy is enough.” ([53], p. 169)

Thus, Eiffel is designed to permit the programmer to decide whether one or
more (two, according to the language definition) copies of a feature are to be
included by multiple inheritance into a subclass. Further down the same page,
Meyer states explicitly that:

“Not only would it be too restrictive for the language definition to specify
either solution 1 or solution 2 for all cases of repeated inheritance: forcing
developers, for each case of repeated inheritance from a class A, to select either
one of these solutions for all the features of A would also be impractical. In
reality, you need replication for some features and sharing for some others”
([53], p. 169)

Eiffel, therefore, provides a mechanism that provides the programmer with
the required flexibility. This is called the Repeated Inheritance Rule ([53],
p. 170). The rule states that if a feature is inherited under the same final
name (name in the subclass being defined), a single feature is included (the
multiple copies are shared); otherwise, the feature is included as many times
as there are new names for it (this is referred to as replication). In order to
make this rule work, Eiffel provides a mechanism for renaming features that
have been inherited.

Eiffel, unlike many of the other proposals considered in this chapter, permits
the programmer to choose between tree and linearised inheritance.

The Repeated Inheritance Rule suffers from a problem. Because features
can be arbitrarily renamed, it is possible for a feature to be inherited in a

116 4. Inheritance and Delegation

form that represents the result of renaming. This can lead to naming conflicts
in different branches of an inheritance lattice (different features can be given
the same name). In order to remedy this, Eiffel has a Repeated Inheritance
Consistency constraint. The constraint is defined thus:

“It is valid for a class D to be a repeated descendant of a class A if and
only if D satisfies the following two conditions for every feature f of A:

1. If the Repeated Inheritance Rule implies that f will be shared in D, then
all inherited versions of f are the same feature.

2. If the Repeated Inheritance Rule implies that f will be replicated in D and
f is potentially ambiguous, then the Select subclause of exactly one of the
parents of D lists the corresponding version of J , under its final name.”
([53], p. 191)

Eiffel’s select construct is a means to remove ambiguity in inheritance
declarations. Consider the case of class A which defines a method called f .
Class A has two subclasses, B and C, each of which redefines f . Class B

redefines f as a method that prints “yes”, while C redefines it as one that
prints “no”. Now consider a class D which is a subclass of both B and C. Class
D will inherit both versions of f ; clearly, they conflict in their behaviours. Eiffel
allows renaming of components that are inherited from particular sources, so
it is possible to rename the instance of f that comes from B as bf , and that
from C as df (in fact, as the language definition makes clear, such a simple
renaming is invalid in Eiffel).

The problem is that this relies upon the order in which the renaming is
performed. In a simple case such as this, where the origins of features can be
determined with ease, there is no problem with such renaming. However, the
standard case is far more complex, and determining where things come from is
not easy. Furthermore, the order in which classes are listed in a subclass can
be significant, particularly because this affects search order in the superclass
lattice. In the case under consideration, there are too many interpretations of
f , not too few; banning the case is, according to Meyer, not a serious option.

Whenever a repeated descendant (such as D here) inherits two or more
separately redeclared versions of a feature, or the original and a redeclared
version, the Repeated Inheritance Consistency constraint requires that D select
exactly one of them. This is where select is used: it acts as a redefinition of all
of the conflicting inherited versions (f from both B and C in this example).
This means that f is bound to df under the above renaming—df is the selected
version.

One reason why the problem arises is that Eiffel is a dynamically bound
language and both B and C are of the common type A. Thus, any variable that
is declared to be of type B, say, is also of type A; equally, any variable declared

4.14 Mixin Classes 117

to be of type C is also of type A. Therefore, any variable declared to be of type
B or C is automatically of type A. As a consequence, anything of type B can
be assigned to a variable of type C and vice versa. It is not, therefore, possible
to discriminate between df and bf in the example presented above, for they
can be considered to be of the same type. Since the order in which the lattice
is searched is significant, the first instance of f that is encountered can serve
the role of the first renamed f in D. As long as we can identify the origin of a
feature, reliance upon search order is possible. However, in cases that are more
complex or in which we cannot know the order, such reliance is misplaced, for
a feature might be derived from a source other than the one we believe it to
be. If, for example, we have four classes divided into two subclasses and two
supers such that each of the subclasses inherits from both of the superclasses,
there is no particular way for a feature to be inherited. If the origin cannot
uniquely be determined, it becomes impossible to determine which of a repeated
collection of features is the intended or “correct” one. Thus, the select construct
is introduced with the effect of stating that the feature being selected is the
one chosen for use in the class. The feature that is selected is guaranteed to
be derived from the superclass specified. Some Eiffel syntax should make this
clearer:

class D inherit

B

rename

f as bf

select

bf

end;

C

rename

f as df

end

...

end -- class D

This has the effect of making bf , the version of f inherited from B, the version
of f that is used in class D.

4.14 Mixin Classes

We have already encountered the concept of an abstract class. This is a class for
which it makes no sense to create direct instances. An abstract class serves as a

118 4. Inheritance and Delegation

place-holder in an inheritance graph, defining those properties and behaviours
which are required by many other classes, but, when taken on their own, should
not be instantiated. Examples of abstract classes abound in Computer Science.

The inheritance graph has, as one of its linearisations, one which is shown
in Figure 4.10.

Figure 4.10 A linearisation.

It will be recalled that there is more than one possible linearisation of
this graph and that classes are inserted into the linearised form by the search
algorithm so that a class is often separated from its direct superclasses. Above,
we considered this to be a disadvantage. It is possible to generalise this to
a new form of class, one that has no apparent ancestor, but which does not
invoke parent operations in any meaningful fashion. Classes of this kind have
been named mixin classes because they rely on the linearisation in order to
be “mixed in” at the appropriate place as a class that inherits from a class
providing the required operations. This means that it is possible to create
mixins that can be mixed in to a set of different superclasses (base classes
in mixin terminology). A number of authors have suggested that mixins are
useful and highly flexible building blocks with which to construct inheritance
hierarchies. An alternative approach to multiple inheritance is based upon the
mixin as the only mechanism used to create inheritance hierarchies. This is
called mixin-based inheritance [17, 16, 40].

The classic example of a mixin is a class that adds colour attributes to a
variety of base classes.

In mixin-based inheritance, a mixin is not a class and multiple inheritance
is a consequence of, and not a supporting mechanism for, the use of mixins.

4.14 Mixin Classes 119

In this approach, mixins are the only abstraction mechanism for building the
inheritance hierarchy (see [17, 16, 40, 26, 70], as well as [69]).

Let us consider the following model of inheritance. We consider inheritance
as an incremental modification mechanism that alters a parent to produce a
result. The result is often some kind of combination of the parent plus its mod-
ification. Such a model is fundamental to the model of inheritance proposed by
Bracha and Cook [17] and is used as the basis for the introduction of mixin-
based inheritance. In that paper, it is also shown that mixin-based inheritance
subsumes those mechanisms provided by Smalltalk, Beta and CLOS for in-
heritance. We can, following Steyaert ([69], p. 118), write the inheritance as a
modification process for a parent, P , and result R under a modifier M , as:

R = PΔM = P + M(P)

While it is the case that in conventional inheritance of whatever form, the
modifier, M , has no independent existence, being usually part of the result,
mixin-based inheritance is based upon the intuition that one can view the
modifier M as an abstraction which has an existence that is separate from
the parent and result—i.e., it is a kind of operator. Under this interpretation,
modifiers are called mixins. The composition operator, Δ, is called a mixin
application. The class to which a mixin is applied is called the base class.
Classes can only be extended through the application of mixins in pure mixin
inheritance. The base class is typically accessed through a pseudo-variable in
the same way that a subclass has access to its superclass, even though the
composition operation takes the base class as an argument. In statically typed
languages, this has the implication that a mixin must specify the names and
types of the attributes a candidate base class must supply; for this reason,
mixins are occasionally referred to as “abstract subclasses”.

Mixin-based inheritance, as described above, is based on the model of inher-
itance as an incremental modification mechanism. The concept makes explicit
wrappers and wrapper application. Steyaert [69] generalises mixin-based inher-
itance in three ways. First, his mixins are based on a more general formulation
of the concept of a wrapper in which wrappers can have more than one parent.
The concept of a wrapper with multiple parents was introduced by Cook [27].
In Steyaert’s work, multiple parents are used to solve name clash problems in
multiple inheritance hierarchies when interfaces are merged. Secondly, the use
of mixins is extended to object-based inheritance. This is similar to the im-
plicit anticipated delegation of Stein et al. [66]. Thirdly, mixins can be viewed
as named slots in objects in the same way that objects and methods are; this
permits an object to exercise some control over the way in which it is extended.
This leads to an abstraction method that can control inheritance hierarchies.

120 4. Inheritance and Delegation

It also implies nested mixins as a natural consequence of permitting mixins to
be slots.

4.15 Alternatives to Multiple Inheritance

It should be clear from the above that multiple inheritance is far from being
a settled issue. Differences still exist as to how to perform searches among the
multiple superclasses and how to resolve the problem of avoiding the duplicate
slot or method names that can result from a superclass search. The most obvi-
ous alternative is to resort to single inheritance (as is done in Beta, for example)
and to employ some other technique as appropriate, as we saw in Chapter 2
when we considered Beta’s block structure and its ability to represent nested
classes. Here, we consider the concepts of perspectives and interfaces as two
popular suggestions.

4.15.1 Perspectives

An alternative that derives from the knowledge representation literature is the
concept of perspectives. This appears in the FRL work of Roberts and Gold-
stein at MIT [57], as well as in Braspenning and Bakker’s INCA [7]. The idea
underpinning a perspective is that it represents some facet of the object as
seen from some viewpoint. Our example of the water-skiing accountant would
be organised as a class representing accountants which has a perspective rep-
resenting the water-skiing hobby. If it is necessary to know about the hobbies
of an accountant, the perspectives are examined and the one representing hob-
bies is accessed. This would represent the multiple inheritance from classes
Accountant and Water-skier.

Thus, a class or object is associated with one or more perspectives. If per-
spectives are represented as kinds of class (as they might be in an implementa-
tion of INCA), their inclusion within an ordinary class, C, might be performed
by having a slot that is to contain a list of perspective names. The slots of the
various perspectives are then merged in instances of C. This requires a special
annotation in the definition of a class, but, as Eiffel shows, annotations can be
used to very good effect when they are well-motivated.

Perspectives are special kinds of class. They engage in inheritance them-
selves and can, therefore, inherit slots from their superclasses. They can also
have perspectives themselves, assuming that the underlying structure is regular
(as it should be). In the case of a class representing an accountant, we would,

4.15 Alternatives to Multiple Inheritance 121

presumably have a Hobbies perspective which would, presumably, hold a set of
references to Hobby objects. But a class representing an accountant will also
have more than one perspective, for we have Person as an accountant, as a
person with hobbies, as a parent, as a tax-payer, and so on. Some of these can
be inherited from the class’s superclass (tax-payer), but many will not, and
some will depend upon who, exactly, the person being represented is. This is
an issue which suggests that individuals be represented by their own classes;
this was an argument that led to the proposal of prototypes, so we will not go
further into the issue.

The Beta language contains a mechanism that allows perspectives (or as-
pects) of an object to be represented in a fashion that does not require a
completely new syntactic construct, or a new semantic concept. Instead, it per-
mits the explicit definition of classes (or Beta’s equivalent of classes) to occur
as the values of slots. Thus, Beta permits the definition of nested classes (as
does C++ and Java). This gives Beta an extended block structure and allows
different, separate, aspects of an entity to be given a relatively straightforward
representation. The block structuring principle allows for a degree of modular-
ity and information hiding. Because the components are classes, they can be
directly instantiated and manipulated as such.

4.15.2 Interfaces in Java

Another alternative approach to multiple inheritance can be seen in Java. Java
is intended to be a much-simplified version of, and improvement upon, C++.
It omits pointers and multiple inheritance. Instead of multiple inheritance, a
Java class can achieve the same effect by inheriting from a single superclass and
implementing one or more interfaces. An interface is a construct that collects
into a single unit the specification of the variables, constants and methods
that, when implemented, will perform the functions the interface is intended
to perform. An interface, let us stress, is not a class but a specification of the
data and operations that achieve some effect. A class which implements an
interface must provide definitions for the methods specified by the interface;
these methods, as well as any constants and variables specified by the interface,
can be inherited by the subclasses of the class which implements them. Since
it can implement an unbounded number of interfaces, a Java class can gain the
effect of inheriting from multiple sources.

The interfaces approach works relatively well. In versions of Java before ver-
sion 1.1, interfaces could only contain method prototypes (using ANSI C/C++
terminology). In version 1.1 and after, they can contain constants and variables
as well as method prototypes. This allows some specification of a state to be

122 4. Inheritance and Delegation

acquired by implementing classes. This is important because inheritance not
only provides access to methods, it also provides components to be included in
the state.

4.15.3 Delegation and Prototypes

We saw how delegation works in the case of prototype languages in the last
chapter. In these languages, there is no class structure and no inheritance lat-
tice. As we saw, new objects are created from old by cloning or by merging.
Cloning is a more common technique and depends upon the existence of a single
parent.

Prototypical objects were originally proposed by Lieberman [44]. In that
paper, Lieberman assumes that an object will usually be composed of more
than one prototype:

“To create an object that shares knowledge with a prototype, you construct
an extension object, which has a list containing its prototypes, which may be
shared with other objects, and personal behaviour idiosyncratic to the object
itself. When an extension object receives a message, it first attempts to respond
to the message using the behaviour stored in its personal part. If the object’s
personal characteristics are not relevant for answering the message, the object
forwards the message on to the prototypes to see if one can respond to the
message. This process of forwarding is called delegating the message” (pp. 215–
216, original italics).

Thus, we see that Lieberman explicitly construes an object as being com-
posed of one or more prototypes, the object being able to serve as a prototype
in later constructions. Therefore, delegation should occur between an object
and many others (its prototypes).

The idiosyncratic behaviours exhibited by an object can contain compo-
nents which engage in computed delegation; i.e., computations which decide to
which objects delegation should occur (we mentioned this in the last chapter).

Thus, the range of delegation behaviours that are permitted of a prototype
is relatively extensive. This suggests that delegation can be a more dynamic
mechanism than inheritance; it also suggests that relationships exist between
an object and its many prototypes in a fashion related to those between a class
and its superclass.

Under delegation, when an object needs a slot or a method, it delegates
to one of its parents. In the case of a method, it is executed in the requesting
object’s context; a slot is merely retrieved. The process of delegation, at least
in its conventional interpretation, would involve messages being sent to the
prototypes that are the parents of the sender. In a sense, this kind of delegation

4.15 Alternatives to Multiple Inheritance 123

involves a search through the supers of the requesting object. Viewed in this
light, delegation does not admit of a comparison with multiple inheritance for
delegation is related entirely to single inheritance.

If, however, we consider the Actors approach to computation [41, 2, 1, 3],
we see a more general approach to delegation that is more closely related to
multiple inheritance. In Actors, the fundamental unit of computation is an
Actor, a side-effect free module which executes in parallel with all other actors
and which interacts with them via a message-passing protocol. In Actors, if an
individual actor receives a message to which it cannot respond, it delegates the
message to another actor. If the first actor to which the message is delegated is
unable to respond (perhaps, itself engaging in delegation in order to determine
this), the original, delegating actor can attempt to delegate to an arbitrary
number of other actors in an order determined by that actor. Thus, we have a
situation in which a single object, an actor, is able to delegate messages to other
actors; this corresponds to the notion of multiple inheritance. We could construe
multiple inheritance as the sending of messages to the multiple superclasses of
the sending object.

In the multiple delegation case, the actor determines the order in which
it delegates to the other actors. In a more generalised prototype language, a
prototype can delegate to an arbitrary number of other prototypes. It is most
natural to delegate first to those objects (prototypes) which were involved in the
creation of the delegating one. These objects are more likely to contain informa-
tion that is central to the delegating object’s structure. However, there would
appear to be no reason why a prototype could not delegate to any appropriate
prototype in the system. The limit on such behaviour is the appropriateness
of the prototype to which the task (message) is being delegated. The order
in which delegation is performed can also vary. A strategy requiring delega-
tion to the most appropriate prototype first, followed in descending order by
those less likely to produce results, is one approach. If delegation is needed in
order to synthesise a new entity, the prototypes that are able to supply data
and operations appropriate to its construction will receive messages–note that
such dynamic creation of entities is extremely hard to perform in a class-based
language.

An efficiency problem was identified by the SELF team with respect to
the slots shared between prototypes. They observed that strict cloning would
involve making a complete copy (usually a shallow, not a deep, copy) of a pro-
totype before subjecting it to modification. This is the approach taken in the
Kevo language [76, 77], a Forth-based prototype language for the Apple Mac-
intosh. Kevo is a remarkable achievement, supporting reflection (see Chapter
8), multi-tasking and a graphical user interface. The cloning operation in Kevo
involves taking copies of objects and then modifying them. This leads, natu-

124 4. Inheritance and Delegation

rally enough, to many copies of slots being present in the system at any time.
As far as the SELF team was concerned (see [24]), this is a waste of memory,
while Kevo makes it a virtue. The Kevo experience suggests that for many
objects, the amount of memory consumed in copies is not that great, however
the additional expenditure of memory is performed.

The SELF team decided that this duplication wasted memory. Cloning
should, therefore be restricted. For each prototype, a traits object is created.
This object represents everything that is essential about an object. In a sense, it
is a kind of class to which delegation can occur. When delegation is performed,
the traits object will respond with values that are typical of an entire class of
objects, or with methods that are general for the entire class. Since whatever is
put into the traits object must be common to all objects of that kind, it seems
sensible to expect that a traits object will be composed of constant slots, ac-
cess methods and general methods. It can be argued that traits objects merely
re-introduce classes into prototype-based languages.

For example, if we consider an object representing a point in a two-
dimensional space, its traits object might contain a method to convert from
Cartesian to polar co-ordinates, and a method to perform the inverse compu-
tation, as well as a method to print the points data (its two co–ordinates).

In [67] Stein (pp. 138–146) argues that inheritance is a more general mech-
anism than delegation. It is possible to argue the converse: i.e., that delegation
is more general than inheritance. The status of delegation with respect to in-
heritance is, therefore, controversial.

4.16 Aggregation

The message that is to be derived from the concept of part objects is that
they provide a mechanism that is as powerful as multiple inheritance, but with
less conceptual overhead (and with a simpler semantics). They also show how
aggregation can be simulated in Beta. Aggregation is a technique that we have
not yet mentioned, but is used in a number of systems, Microsoft’s OLE, for
example. Aggregation is another alternative to inheritance, one that is closely
related to, but distinct from, delegation.

The concept of aggregation is founded on the idea that components of an
object can be obtained via either naming or message passing. In the case of
naming, one object names the components of another object and refers to these
remote components by means of these names. This means that one object has
access to at least the interface of the other object. If aggregation is performed
by means of messages, we have a structure closely related to delegation. If

4.16 Aggregation 125

the aggregating object wants a component, it sends a message to the object
which contains it; the receiving object then returns a message that contains
the desired object (so, in the case of a method, it is executed in the context of
the delegating–or aggregating–object). When an object based on aggregation
is used, it must be used in conjunction with the objects whose components
it references; clearly, an aggregate object depends upon the other objects for
its operation. This suggests that an aggregate object is related to a container
object (in OLE, aggregations are containers).

If naming is used to refer to objects and components, a single address space
is implied; if messages are used to gain access to objects and components, there
can be multiple address spaces (hence a distributed application). Neither of
these assumptions is necessary, provided that adequate support and translation
mechanisms are provided.

Conceptually, the same remarks that apply to delegation apply to aggre-
gation. In this sense, aggregation is a variety of delegation. However, for an
aggregation to be formed, more than one object is required. This contrasts with
objects under inheritance and delegation where we can have a well-formed pro-
gram composed of a single object (this object does not engage in inheritance
or in delegation).

Consider the case of a DE queue which is based on a FIFO queue class.
The DE queue type will be defined in terms of an add to the front and an add
to the back method, an empty test, and so on. Some of these operations are
inherited from the FIFO class, but some are newly defined in the DE class. If
we now try to define a stack (a LIFO stack, that is) in terms of the DE class,
we encounter the problem that we need to exclude, or prevent the inheritance
of, some operations (e.g., the add to the back operation). Further examples of
this kind can often be found in the use of Java’s API classes (I have frequently
needed to hide unwanted methods). Given that such an anomaly occurs, it
might seem that simple subclass derivation is not the correct way to handle the
problem. Aggregation can be employed, together with aliasing or redefinition,
as the following examples show (the reader familiar with Beta should note that
I have simplified the language a little in order to avoid unnecessary details).

In Beta, use of part objects can be made so that some operations are hidden
because they are not exposed in the containing class.

If the Stack class is defined as:

Stack : (# d: DEqueue;

push : d.enterlnFront;

pop : d.removelnFront;

...

#)

the part object, d, can be made accessible via the path notation.

126 4. Inheritance and Delegation

Now, if we assume that the Stack class will be almost the same as the
DEQueue class with the exception that there is no enterInFront method, a
part object can be used in the definition of push:

Stack : (# d: DEQueue;

push : (# ? #)

pop : d.removelnFront;

...

#)

We can also engage in a complete redefinition of DEQueue’s operation:

Stack : (# d: DEQueue;

push : d.enterlnFront(# ? #);

pop : d.removelnFront;

...

#)

This redefines the enterInFront method that is originally defined in the
DEQueue pattern; the outermost definition overrides the one in the original
class. This technique ensures that we have the right definition of the method
for our use.

Aggregation plus renaming can also be used to implement the kind of mul-
tiple inheritance that has been used in C++ [75]. Assume we have a pattern
T, such that:

T : (# a : A;

b : B;

#)

This aggregates objects a and b which are instances of A and B, respectively.
Assuming that A has slots x, y and z, and B has attributes s and z, the slots
available to T can then be accessed by:

a.xa.ya.zb.sb.z

In order to avoid naming conflicts and to avoid compound identifiers, renaming
needs to be performed. (Beta provides other facilities to assist in automatic
name-conflict resolution, but they are not relevant to the current discussion.)

The essential point, the one which the reader should remember, is that
aggregation is an alternative to inheritance, particularly when locally defined
classes are permitted. In the above examples, aggregation helped in a more
natural definition of the Stack class (pattern, in Beta terms) than is possible
just using inheritance (the reader is invited to compare the Beta solution to
that in [30]). The developers of Beta argue that part objects are an extremely
useful addition to an object-oriented language, one which alleviates a number
of difficult problems.

4.16 Aggregation 127

EXERCISES

4.1. Give an example of an abstract class in an inheritance hierarchy and

a) Justify its existence;

b) Explain how it affects any classes that are derived from it. (You
can consider the class hierarchy as: class R is the superclass of
abstract class Abs, abstract class Abs is the immediate superclass
of classes A and B.)

How does the abstract class affect inheritance of slots from class R?

4.3. Outline at least three methods for performing multiple inheritance.
Explain in detail how they differ.

4.4. What is the problem with multiple inheritance? In your answer, you
should refer to the so-called “diamond property”.

4.5. The CLOS multiple inheritance algorithm is somewhat complex. Can
this complexity be used to the programmer’s advantage? If so, how?

4.6. Java classes have at most one superclass. However, Java also sup-
ports multiple inheritance. Outline the solution to multiple inheri-
tance adopted by Java’s designers. Is this approach as clean as that
adopted by Eiffel?

4.7. Slots and methods can be overridden. Give an example of an over-
riding definition.

4.2. Let R be the superclass of A, A the superclass of B and B a su-
perclass of C; also, let the slots of R be r1 (a public slot) and r2 (a
protected slot), the slots of class A be slots a1 (a public slot), a2 (a
public slot) and a3 (a protected slot) and let the slots of class B be
b1 (a public slot) and b2 (a public slot).

– List all the slots that are visible in A and in R to an entity that
is not in this inheritance chain.

– If an abstract class, Abs, is inserted into the inheritance chain
between R and A and Abs has only protected and private slots,
how are the slots visible outside the inheritance chain affected?
Also, what are the slots that A now inherits from its super classes
(assume that R is the root class).

128 4. Inheritance and Delegation

4.11. In C++, a method can be declared virtual and virtual void (i.e.,
have = 0 as a default body). Account for the differences between
these two declarations.

4.12. What is the point of a virtual superclass in C++?

4.9. Slots and methods can be overridden. Most object-oriented lan-
guages do not, however, permit slots and methods to be removed.
Why is this? Find an illegal and nasty fix that allows removal of
methods.

4.10. Java interfaces have become little more than a form of abstract class.
Discuss.

4.8. Explain what happens under inheritance when a slot or method is
overridden. If a method is overridden, what happens, under inheri-
tance, when that method is called?

5
Methods

5.1 Introduction

Methods often seem to be the forgotten part of object-oriented languages. The
emphasis seems very much to be on inheritance and polymorphism, not on
what methods are and how they are derived. This chapter reviews the position
of methods in object-oriented languages and how they are located. Methods
are the representation of operations in an object-oriented programming lan-
guage. The slots of an object represent the properties or data that the object
encapsulates and methods represent the operations that are defined over these
slots. They are procedures and functions which are associated with an object
via its class or prototype and are intended to perform the operations defined
for that object or class of objects. Methods are the procedural component of
object-oriented languages of all kinds.

Because they are the procedural element, methods often tend to be over-
looked. In C++ and Java, methods are very similar to routines in C, the major
difference being that methods have access to a pseudo-variable called this

which refers to the class in which the method is defined; this allows a method
to access the data slots of the objects over which they are defined. A pseudo-
variable with the name self is used in Smalltalk, LOOPS and many other lan-
guages for exactly the same purpose; it is often implemented as an additional
parameter which is automatically added to each methods formal parameter list;
the pseudo-variable is always bound to the object to which the method belongs
when that method is called. In prototype-based languages, the self variable

130 5. Methods

is bound to the object which is calling the method, it should be noted; it does,
however, serve exactly the same purpose as in class-based languages.

The Beta language [43] has a novel approach to methods and classes. It
treats them both as aspects of an over-arching concept, the pattern. The differ-
ence between a class and a method is essentially that a method can be executed.
The representation allows slots to be added to basic methods in exactly the
same way as if method definitions were ordinary class definitions. This allows
methods to be annotated in various ways, for example describing the situations
in which they should be used (this is reasonable because a method object can
only describe or define the method; it can never be the method).

The method representation adopted in Beta suggests that it should be pos-
sible in a rigorous fashion to consider methods as first-class objects. In CLOS
and other languages that use generic functions, methods are often implemented
as objects, but they tend to be treated in different ways. One way in which we
could do this is to examine the types in the signatures of method objects and
to organise them in those terms; this is very much the way in which generic
functions and multi-methods are organised. However, such an approach still
ties methods with classes and does little to clarify the use of inner or super
statements when methods are treated as separate from classes as they can be
in some languages.

In Beta, it is possible to define free-standing method patterns which should
naturally be treated in terms of their family relationships; the inner statement
allows such methods to be defined so that they can be specialised in a way
that is not directly related to containing classes. Similarly, in CLOS, sets of
multi-methods can be defined that are not systematically related to classes,
but which are internally consistent and admit of a classifying construct such as
a class; multi-methods are also used in Cecil [23]. Until we are able to define
such methods in a more flexible way, we will merely concentrate on the ways
in which methods are associated with classes and prototypes.

It is clear that methods must interact with objects in a number of ways.
Principally, methods must be associated with objects in some way in order
that they be found and applied to the correct entities. In many languages,
there is an exact correspondence between a method and a set of classes (it is
possible, as will be seen in Chapter 6, that two methods can have the same
name and appear in different classes); for example, in CLOS, multi-methods
are associated directly with classes (considered as types). When a method is
defined in a class which has subclasses, that method is available to all subclasses
of its defining class via the inheritance relation. This means that the operation
represented by the method is defined for the subclasses. It also means that the
code that is the runtime representation of that method is shared among all
of the defining class’s subclasses; it is not necessary for a class to redefine a

5.2 Methods and Objects 131

method unless the inherited behaviour is not what is wanted in the subclass
(such redefinition is possible in most class-based languages). This immediately
leads to a question (which is asked in Sather [60, 61] and, to a lesser extent,
in Eiffel [53]): why define the code (body) of a method until it is needed?
Classes which do not specify method bodies should be considered abstract for
they cannot be fully instantiated (full instantiation implies that all operations
be defined). In Sather, unless a class is to be instantiated, its methods are
not completely specified; instead, only their signatures (see below) are defined.
Later, when an instance of a class is required, the implementation-specific parts
are stated by the programmer. This has the consequence that code sharing,
which is automatic in most object-oriented languages based on classes, now
must be a matter of explicit choice. The normal situation is for code to be
shared because complete methods (signatures and code) are inherited; this
allows one to treat inheritance as if it were just a mechanism for code sharing
(see [64] for a discussion).

The interaction between inheritance and methods is of considerable impor-
tance because it is possible in subclasses to redefine methods that have been
defined in ancestor classes. In typed languages, there are interactions between
this redefinition and the type system.

In a similar fashion, it is possible to overload the methods that are defined in
ancestor classes. Overloading is another property that is intimately connected
with a language’s type system.

Section 5.2 deals with the relationship between methods and objects, while
Section 5.3 considers the relationship between object constructors and methods.
Next, in Section 5.4, the concepts of environment and closure are introduced in
order to motivate a discussion of higher-order functions and methods. As part
of this, the block construct in Smalltalk and SELF is discussed and shown to be
an extremely powerful construct–it is used in both languages in the definition
of conditional and iteration constructs. Section 5.5 considers the interactions
between methods and inheritance. Finally, static and dynamic method binding
are discussed and two key implementations of dynamic binding are presented.

5.2 Methods and Objects

Methods are typically associated with objects in object-oriented programming.
In class-based programming, they are associated with classes; in prototype-
based languages, they are associated with prototypes. When defining a class, it
is typically the case that methods must also be defined. If we recall the ADT
model of class-based programming, it can be seen that methods represent the

132 5. Methods

operations to be performed by the ADT represented by the class. When defining
a new prototype, new behaviours are added in order to differentiate it from
other prototypes, in particular the prototypes from which it is derived. When
object-oriented programming is viewed as a modelling technique, methods are
the behaviours of the objects that are required by the model.

In a great many languages (Smalltalk, Java, C++, Eiffel, Sather, Beta)
methods are defined for the class in which they reside. Methods can be over-
ridden as part of the construction of an inheritance hierarchy, and over-riding
methods are associated with new classes that are lower in the hierarchy. The
relationship between methods and objects (typically classes) is clearly very
close, even though methods with slightly different behaviours might be asso-
ciated with the same name at different points in an inheritance hierarchy. For
example, we might have a class which represents a container and which has
an addition method to add elements to that container. In a derived class, we
might want to keep a count of the number of items we have added to the con-
tainer, so we subclass the original class and redefine the addition method so
that it increments a counter every time it is called and then adds an element to
the data structure. These two methods will have the same name and the same
signature (this is required in C++ and Java, for example).

The signature of a method is the complete specification of its type. In
Java/C++ notation, a function which inputs two integers and returns no value
would have a signature:

int × int → void

for example; a function which inputs an instance of InputStream and an integer,
returning an integer would have signature:

InputStream × int → int

(again, in C++/Java notation). We will return to the concept of the signature
in Chapter 6.

A constraint in many languages is that the signatures of derived methods
must be the same as in their parent class. This means that if we have a method
m in a class, C, and we then define a subclass, C1, of C, and we redefine method
m, if we want the version of m in C1 to over-ride that in C, the two must have
the same name and same signature.

The most significant alternative to this direct attachment of methods is the
generic function and multi-method combination found in languages of the LISP
group and in Cecil [23]. The underlying ideas are that method specification
can be separated from class definition and that a method can have different
implementations depending upon the types of its inputs. This approach also
makes the interface to methods explicit. Thus, when using generic functions and
multi-methods, the programmer first specifies the interface which the method

5.2 Methods and Objects 133

will present and then defines instances of the method which depend upon their
input types.

The specification of the generic function is a specification of an interface.
It does not include any code. A generic function is a template, therefore. To
define a generic function, a name is supplied (the name of the method) and
the arguments are specified. The arguments must be correct in number and
are specified as arbitrary names. There are no type specifications for a generic
function’s arguments. The reason for this is that the arguments will be asso-
ciated with types when the methods are defined. Until a method is defined, a
type cannot be associated with an argument; furthermore, a generic function
cannot specify types because that might anchor the function at a particular
place in the space generated by the classes in the program or system. When it
is defined, a generic function specifies the corresponding method’s name and
its arity.

The next stage is to define methods that implement their generic function.
Method definition is the same in this approach as it is in others: a procedural
entity is constructed. When defining a method, its body is constructed in the
normal way, and its arguments are defined. The name of the method must be the
same as the generic function which it instantiates and the number of arguments
must be the same (LISP, like some other languages, allows, amongst other kinds,
optional parameters and these are taken into account by the method standard
defined for CLOS). Types can be specified for each argument. In LISP, it is legal
for a type to be omitted; in such a case, the formal parameter can be bound to
a value of any type–it is a polymorphic variable (in fact, CLOS defines a root
type, t, from which all types are derived; all formals which are not associated
with a type are assumed to have t as their type).

There can be more than one method (actual method) for each generic func-
tion. This is the reason why they are called multi-methods. At runtime, it is
necessary to determine which multi-method to apply. This is done as follows.
When a call is made to a method, the type of each argument is found in turn.
When the types have been determined, the method with the same input types
is chosen for execution; if there is no method whose input types match, either
an error is signalled or a default method (if there is one) is called.

Although conceptually accurate, the search for a method would actually be
performed in a way that does not wait until all types become available. Instead,
it is performed incrementally. First, all methods whose first formal argument
has the same type as the actual argument are retrieved (plus any methods
which either have an unspecified type for their first argument or which have
a first argument of root type). The second argument’s type is used to reduce
the set by eliminating those methods which do not have a second argument of
type matching that of the second actual parameter, and so on recursively. This

134 5. Methods

does involve a space overhead, but techniques exist [42] to speed up retrieval.
The generic functions approach separates the definition of operations from

the classes to which they apply. It suggests that methods should be treated as
independent, possibly polymorphic, entities which can be represented in their
own right. This is an interesting possibility, one to which we will return later
(see Chapter 8, below). Meanwhile, it is worth noting that Cecil [23], a language
not of the LISP group, has adopted multi-methods and generic functions.

5.3 Object Constructors and Methods

There is a considerable interaction between object constructors and methods.
In particular, the way in which parameters are passed to methods interacts
with objects.

Under the call-by-value (leftmost-innermost or applicative-order reduction)
scheme, values are passed into procedures; thus, any expressions which are
supplied as parameters must be evaluated in order to produce a value to which
the procedure can be applied. Given the following function definition:

function add1 (int n) : int is

n+1

end function;

the following call:

add1((2 * 3) + 1)

(assuming that add1 is the function which adds one to its argument) will be
evaluated as follows. The expression supplied as an actual parameter (2∗3)+1
is evaluated to produce 7. This value is then bound to the formal parameter,
n, and the body of the add1 function is executed to produce 8.

This scheme works very well for simple types, for arrays, records and point-
ers; it also works well for functions and procedures. Arrays and records can
be represented by pointers to blocks of store; they can also be copied bitwise
from the caller to the called routine’s stack. Procedural objects are often repre-
sented as pointers to their primary entry points or as pointers to closures. The
question arises as to the effect of a call-by-value scheme upon objects. Clearly,
if objects are represented by pointers, all that need be done when calling a
procedure is to pass the pointer as an argument. If objects are not represented
by pointers, the entire object has to be passed to the called procedure. Here
is where potential problems are encountered, for call-by-value implies that a
local copy of the parameter object is made. A problem with this is that C++,

5.4 Environments and Closures 135

by default, for example, employs a technique called memberwise initialisation;
it does not employ a bitwise copy of objects. This process copies each built-in
or derived data slot from one class object to another. Component classes are
subjected to the same process and not copied; this can lead to sharing of values
where no sharing was intended.

If a C++ class contains a pointer and defines a destructor method, mem-
berwise initialisation is, in general, insufficient. The reason for this is that the
destructor method is applied to every instance of a class, not just those created
by a creation method. This fact leads to the possibility that an instance can
be deallocated when such an operation is not wanted.

The solution in C++ is to pass a reference (constant pointer) to a class
which is being passed as a value parameter. This is combined with a technique
which explicitly initialises a new instance of the class from an existing one. This
initialisation technique employs an explicit mechanism for initialising the slots
of the instance that is being created. This ensures that all slots are correctly
initialised. The mechanism employed is not unrelated to that employed when
defining class-specific assignment operators.

If, on the other hand, normal-order reduction, or one of its implementations
(lazy evaluation, call by reference, call by name, etc.), is employed to pass
parameters, the problems with object initialisation no longer occur. The reason
for this is that the address of the actual parameter is passed to the called
procedure when call-by-reference and call-by-name (using a thunk) are used.
These methods, therefore, simplify the calling process somewhat. When using
lazy evaluation, a number of techniques can be used. For example, a promise
might be constructed. A promise is like a thunk in that it is a function of
no arguments (strictly, a closure of a zero-adic function) which, when called,
evaluates its body and returns the result. Thus, the object is ‘wrapped’ in a
function which can be called at any subsequent point in the evaluation of the
program. Promises are not the only way to perform lazy evaluation; functional
languages have been implemented using a variety of techniques that ensure
lazy evaluation (mostly based on the concept of graph reduction). What is
essential for lazy evaluation is to ensure that explicit destructor methods are
not employed until all references to an object have been removed.

5.4 Environments and Closures

5.4.1 Introduction

When discussing methods, it is essential to examine the following concepts:

136 5. Methods

– environments;

– closures;

– continuations.

Here, we will be interested in the first two concepts. The reason for our interest
is that they allow us to determine how free variables are handled by a method
and they allow us to relate code to free variables and, thereby, to provide a
construct which allows us to treat methods as first-class entities. First-class
entities are those computational objects to which methods can be applied and
which can be returned from methods. Here, note, we understand “method” to
include primitive operations such as addition; we do not, of course, expect to
be able to add two environments or continuations, for we still need, in this
chapter, implicitly to respect a type discipline of some form.

When we are able to apply methods to methods and return methods from
methods, we have higher-order constructs and we have gained considerable
amounts of notational power. However, we do not need to go as far as to
make closures (methods) first-class entities when we introduce the concepts of
environment and closure. What we also get, by considering these concepts, is
a better understanding as to what is required at runtime in representational
terms. We also gain an understanding of what it is that is inherited when a
class inherits a method or what is involved in method delegation in prototype-
based languages. Furthermore, the question arises, as a natural consequence of
examining the relationship between methods and objects, as to how slots are
bound; in so-called “impure” languages, the additional question arises of how
non-local variables declared outside all objects interact with methods. Such
questions can be answered by a consideration of the concepts of environment
and closure.

5.4.2 Environments: A More Formal Definition

Most languages make a distinction between those variables which are local to
a procedure and those which are not. In the λ-calculus, as well as in the Lower
Predicate Calculus, this distinction is made. Variables in the λ-calculus can
be free or bound. If a variable is bound by a λ operator, it becomes bound,
otherwise it is free. Thus, in:

λx.fx

the variable x is bound by the λ, while f is free (not captured, or abstracted,
by a λ). On the other hand, in:

λx.λy.fxy

5.4 Environments and Closures 137

variable f remains free for the entire expression while y is bound in λy.fxy and
x is bound in λx.λy.fxy. In the sub-expression λy.fxy, we say that x is free
for y in λy.fxy; this means that within the scope of y, x is free. Freeness for a
variable is more fundamental, for, in a programming language, all variables are
bound at some level (even global variables are bound by the outermost scope).

In a programming language, arguments are bound to functions and methods
in a way directly analogous to the λ-calculus. Variables can also be declared
inside a method; this corresponds to nesting of A-expressions. If a variable
is supplied by a scope that encloses the definition of the method (function or
procedure), that variable is sometimes said to be free for the method. Variables
defined as slots in a class that contains a method are free for the class’s methods.

It is well known that free variables fix the value of an expression in the
λ-calculus. Similarly, the free variables fix the value of a procedure, function
or method in a programming language. Furthermore, a method’s free variables
need to be supplied in order for it to execute correctly. The interpretation of
methods as λ-calculus expressions indicates why this is so. Consider:

λx.x + n

This is the add-n function. When we call the function, supplying 5, say, as its
argument, we add n to 5. Even though we have no idea what x is, we know that
for any value of x, the result of applying this function to it will yield a value of
x + n. However, unless we know the value of n that is bound into the function,
we cannot say what the exact value will be for any value of x. Furthermore, we
need n to be associated with a value (bound to a value) before we apply the
function to a value of x. To see this, consider:

(λx.x + n)2

If we apply β-reduction, we obtain 2+n, which is not in normal form. Unless n

is bound to some value, we cannot, strictly, apply β-reduction to obtain a result
(at least, one in normal form). In a programming language, free variables must
be supplied prior to evaluation or reduction so that the evaluation process can
proceed.

When describing the evaluation of a method, it is conventional to collect
all references to free variables and treat them as a mapping from identifiers to
values; the identifiers are the names inside the method by which the variables
are known, and the values are the values that are bound to those identifiers.
This mapping is called the environment. In languages like LISP and Scheme,
the environment is often implemented for each function; the environment can
then be manipulated by the interpretational mechanisms for the language (or
those components of compiled code that deal with variables). The environment
holds copies of non-local (global or free) variables; in some languages (e.g.,

138 5. Methods

Scheme), environments are not shared, so the copies can only be updated by
the method in whose environment they appear, with the consequence that
special apparatus must be used to update global variables. No matter what the
language is, each method (procedure, function) must have an environment to
map its identifiers to their values.

When a method needs the value of a free variable (a non-local variable, that
is), it looks that variable up in its environment. In block-structured languages,
looking up free variables involves a search because it is necessary to examine
all enclosing scopes to see whether the desired variable was defined there. If the
search fails to find the variable (and, hence, its value), the variable is unbound
and an error raised, otherwise the variables value has been found. In most
current languages, the environment is mixed with the runtime stack (if it is a
framed one) and variables references are made in terms of it. Local variables
are found in the topmost frame on the stack. Pointers point to the various lower
levels where the relevant declarations can be found; in some implementations,
a separate array of pointers called the display is used to access non-local (free)
variables (see [4]).

Any computation involves a number of environments. Methods create envi-
ronments to capture their free variables. At the level of the widest scope, there
is the global environment; this contains bindings for such things as mathemati-
cal constants, standard file designators (System.in, System.out, System.err and
so on). This is the global environment. It is part of every method’s environment.
A method can be considered to be an environment and a pointer to its code.
The environment contains the binding for the method’s free variables (at all
enclosing scope levels). To run a method, the code is executed by the processor
and local variables are typically manipulated via a stack. The environment-code
pointer pair is called a closure. In order to run a closure, a stack is required
and the code must be handed to the processor. Thus, a closure represents a
method in a quiescent state; more accurately, we can say that a closure is a
meaningful code fragment (a block, say) that is ready to execute.

Higher-order functions in languages like ML, Haskell, LISP, Scheme and
Pop11 are represented by closures and each of these languages provides a
mechanism for creating and applying closures. In these languages, functions
are first-class entities and can be passed as arguments to and returned from
functions.

One use of a closure is to fix an argument’s value. For example, the addn
function can be defined as:

λn.λx.x + n

(I have added the extra abstraction in order to emphasise the fact that, in
a program, there must always be a top-level binding–there are no true free

5.4 Environments and Closures 139

variables). We could define a closure which binds n to 1 by:

(λn.λx.x + n)1 − λx.x + 1

and thereby define the add1 function. When applied to an argument, the λ-
expression on the right returns a value that is the successor of the argument’s
value. The effect of the definition of add1 is to reduce the number of required
arguments because one of them has a fixed value. What has happened is that
part of the left-hand side’s environment has been frozen to a particular value
(hence the name of the operation in Pop11). Since it is a closure, the function
on the right-hand side can be passed into and out of functions at will. This
allows code to be parameterised with operations, thus increasing the power of
the language.

5.4.3 Blocks in Smalltalk and SELF

Both Smalltalk [34] and SELF [24] employ a kind of closure object in a number
of contexts, in particular the provision of control structures; indeed, closures
have been used in both languages to provide relatively exotic control structures
such as co-routines. We will describe these structures, called blocks, from the
Smalltalk viewpoint for the reason that it is a more frequently encountered
language; the similarities between the languages are such that the description
holds good for SELF and Omega [10] as well.

A block is a sequence of operations (expressions, statements, or actions
in Smalltalk terms) whose execution can be deferred. In Smalltalk syntax, a
block is a sequence of expressions separated by periods and delimited by square
brackets, so:

[index <- index + 1.]

and:

[index <- index + 1. array at: index put: 0.]

are both blocks. When a block (or, sometimes in the literature, block expres-
sion) is encountered, the statements it contains are not immediately executed.
Instead, their execution is deferred. The value of a block expression is an ob-
ject that can execute the expressions it contains at some later time and upon
request. The computation of the value represented by a block expression is per-
formed when the block expression receives the value message. Thus, the two
following expressions have identical results:

index <- index + 1

140 5. Methods

and:

[index <- index + 1] value

both increment the value of index by one.
When a block receives a value message, the expressions it contains are

sequentially executed.
A block expression can, therefore, be created and its execution can be de-

ferred until some later time. In order to make this possible, blocks must be
first-class objects. That is, blocks must be treated like ordinary values such as
integers, strings and characters. In Smalltalk, when a block is encountered by
the compiler, it is compiled into an object; objects in Smalltalk and SELF are
first-class objects and are treated as values, so they can be stored, passed as
parameters and returned as results. What makes blocks different is that they
must be executed in order to produce a (non-block) value. Blocks are analogous
to closures in other languages.

The following code fragment (from [34], p.31) shows how a block can be
stored in a Smalltalk array called actions :

actions at: monthly payments

put: [HouseholdFinances spend: 650 on: rent.

HouseholdFinances spend: 7.25 on: newspaper.

HouseholdFinances spend: 225.50 on: car payment.]

Smalltalk associative arrays have a method at: put: which places the second
argument (the one prefixed by put:) in the location specified by the argument
prefixed by at:. Thus, a block expression is stored in array actions at a place
specified by ‘monthly payments. To retrieve the block, the value message can
be sent to the array:

(actions at: ’monthly payments)value

The retrieved block can then be executed.
The following example (taken from [34], p. 33, but my commentary is

slightly different) shows in more detail how blocks work. Consider the following
code sequence:

incrementBlock <- [index <- index + 1].

sumBlock <- [sum + (index * index)].

sum <- 0.

index <- 1.

sum <- sumBlock value.

incrementBlock value.

sum <- sumBlock value.

5.4 Environments and Closures 141

This sequence is evaluated as follows (we ignore the evaluation of integer-valued
objects). First a block is assigned to incrementBlock and one is assigned to
sumBlock. The variable sum is initialised to zero, while index is initialised to
one. Next, sumBlock is sent the value message; this causes its expressions to
be evaluated and return a value which is assigned to sum. Then, the block
stored in incrementBlock is sent a value message and it is executed. Finally,
sumBlock is sent the value message, causing its evaluation, and the result is
stored in sum. If we follow through this evaluation sequence assigning values as
specified above, when sumBlock receives the value message, it returns the value
one. Next, the evaluation of incrementBlock yields two. The final evaluation of
sumBlock then returns five (sum is one, and index is two).

The evaluation of this sequence is very much as one would expect. However,
there are some points which are worth noting. First, the two blocks are defined
in terms of free variables (recall that the values of free variables fix the meanings
of expressions). However, the variables are defined inside the block and then
initialised at a subsequent point in the code sequence. The second point is that
blocks can be repeatedly evaluated. The free variables in the two blocks store
intermediate results between evaluations.

It is possible for a block to declare local variables (they are called block
arguments). Syntactically, Smalltalk block arguments are prefixed with a colon
and are separated from the rest of the block by a vertical bar:

[:array | total \leftarrow total + array size]

and:

[: newElement |

index \leftarrow index + 1.

List at: index put: newElement.]

A common use of blocks with arguments is to implement functions that can be
applied to all elements of a data structure (cf. the use of LISP and Scheme λ-
expressions and ML fn in mapping functions). Many objects representing data
structures like lists or sequences respond to the do message. The do message
takes a single argument block as its argument. When the object receives the
do message, it executes the do message’s argument once for each of the ele-
ments it contains. Each element in the data structure is bound to the block’s
argument (so the block is applied to successive elements of the data structure).
In the following example, the sum of squares of the first five prime numbers is
computed (a list of values between #(and) is a list in Smalltalk):

sum -> 0.

#(2 3 5 7 11) do:

142 5. Methods

[:prime | sum sum + (prime * prime)]

(the example shows, once again, how a block can be repeatedly applied). In this
example, it can be seen that a block is being used in a higher-order context.
Furthermore, the block is being used to implement a new control structure.

A block can have more than one argument, for example:

[:x :y | (x * x) + (y * y)]

A block with more than one argument must have a corresponding number of
value: keywords in the message that is sent to evaluate it. The above example
would require two value: keywords; the two arguments of the message specify
the values of the block arguments in order. The last example can be evaluated
by the following message:

value value: 2 value: 3

which evaluates to (2 * 2) + (3 * 3) = 4 + 9 = 13.
Smalltalk and SELF take the block to be a fundamental structure. They

both use it in the implementation of non-sequential control structures. The
Smalltalk equivalent of a for loop requires a block:

2 timesRepeat [sum <- sum * sum]

More famously, Smalltalk defines its conditional and conditional repetition
(while) in terms of blocks. Objects with boolean type respond to two methods
with selector ifTrue:ifFalse:, each selector taking a block as its argument.
The interpretation is that the object true sends its value to the first argument,
while false sends its value to the second. We can see this in operation in the
expression to compute the parity of a number (parity is a test for evenness):

(number \\ 2) = 0

ifTrue: [parity 0]

ifFalse: [parity 1]

First, the modulus (remainder) is computed by the \\ operation; the remainder
is tested for equality with zero. If the result is zero, we assign zero to parity;
if it is non-zero, we assign one to parity. The boolean object returned by the
equality test responds to the message with selectors ifTrue:ifFalse:; each of
which is bound to a block. It is possible to use ifTrue: without ifFalse: in
a message (and vice versa).

In an analogous fashion, the whileTrue: and whileFalse: selectors can be
used in a message sent to a block; the other argument to these selectors is also
a block. Thus, schematically, whileTrue: has the form:

[block] whileTrue: [block]

5.4 Environments and Closures 143

(whileFalse: has an identical structure). In order to evaluate such a construct,
the recipient block (the first argument) sends itself a value message and returns
a value. If that value is true, it sends the other block a value message and
then repeats the process. Should the value returned by the first block be false,
execution terminates. The operation of whileFalse: is the exact converse of
this.

Smalltalk makes other uses of blocks. As noted above, they are all variations
on higher-order functions for they allow segments of code to be passed between
expressions. The concurrent execution primitives are based on the use of blocks;
the reason for this is that a block’s execution is deferred until it receives a value
message. Blocks allow complex and novel control structures to be defined. The
downside is that completely incomprehensible code can be produced.

5.4.4 Block Structure in Beta

The Beta language [43] employs an explicit block structuring by permitting
classes to contain nested class definitions. This, as we noted in the last chapter,
is something it shares with C++ and Java, but the role of local classes is less
worked out in these other languages. In the particular case of Beta, this can
mean the nested definition of classes and methods. Because Beta employs a sim-
ilar representation for classes and methods, both of which are called patterns, it
supports what amounts to nested procedure definitions as well as nested class
definitions. (A consequence of this is that a Beta implementation must support
closures.)

Block structure follows the standard scope principles for block-structured
languages. This has the implication that contained definitions are normally
invisible to their container. However, Beta employs a scope–referencing method
akin to Ada, so that, by means of a hierarchical name, a nested class, attribute
or method can be accessed. This allows Beta programs to define well-formed
components and to manipulate them in an enclosed space; we saw how this
could be effected in Chapter 4 when we considered aggregation. As we saw
there, access to methods is an essential aspect of aggregation.

Another consequence of the Beta approach, one that is less obvious, is that
a class can contain a method that defines local classes, not just instances. This
enables the programmer to be very flexible in their processing.

Block structuring makes classes more organised and gives principles for
accessing components. It localises the applicability and effects of method ap-
plications.

144 5. Methods

5.4.5 Higher-Order Methods

In pure object-oriented languages like Java, Eiffel and Sather, it is impossible
to define an independent procedure; all one can do is to define methods. As
we noted, Smalltalk, SELF and impure languages treat procedures or their
analogues as first-class entities. Methods belong to objects (classes, typically),
so, in order to define a method, one needs to define a class. Therefore, if it is
desired to pass a method into a method in one of these languages, it is necessary
to define a class to hold the method that will be an actual parameter. This
requires a uniform naming policy for the potential argument classes.

For example, if we want a class that has a method that could perform
certain operations on a data structure, but they are too numerous satisfactorily
to include as part of that method, one way round the problem is to define
the operations in the classes on which they operate. These operations can be
passed into the main method as part of the class to which they apply. In an
interpreter for production rules, for example, the actions that rules perform
can be extended, in some systems, so, in an object-oriented implementation,
we would define a class for each action and have an execute method in each
class. The execute method takes a number of parameters and implements the
operation performed by the action.

In this way, the main execution method defined for the rule class (we assume
that rule execution is taken care of by the rule’s class) takes the action class as
a parameter and calls the execute method when the action is to be executed.

The alternative to this would be to use a case (switch) statement. However,
this approach has the disadvantage that, whenever a new action is added to
the interpreter, the case statement has to be modified and recompiled. Using
the class-based approach, new actions can be defined without having to modify
the rule’s execute method–all that needs to be done is for the new action to be
represented by an appropriate class; only the new class need be linked into the
interpreter program.

It is possible to define higher-order operations in this way. We could define
the twice function

λf.λx.ffx

in terms of methods and object. This requires the class to pass its method
for f into this method as an additional parameter. (Note that this removes a
level of recursion from the resulting definition.) This requires us to define a
separate class for each operation. While this affords some advantages, it does
increase the number of classes considerably and it does, of course, require a
considerable amount of extra effort in defining new classes. Nevertheless, it is
the only mechanism available in languages such as Sather, Eiffel and Java.

5.4 Environments and Closures 145

In a language like Smalltalk or SELF, blocks are available. We have already
seen how Smalltalk uses blocks to implement conditional and iteration struc-
tures; similar structures are implemented in similar ways in other languages.
Omega [10], for example, is defined in such a way that blocks simplify its struc-
ture and semantics. We can define a two-branch conditional in an Algol-like
syntax as follows:

define cond2 (pred, thenpart, elsepart) =

begin

if (call pred) then (call thenpart)

else (call elsepart)

end

Similarly, an iteration construct can be defined (again in an Algol-like syntax)
as:

define while-iter (pred, body)=

begin

bool cntrl;

l1: cntrl := (call pred);

if cntrl then begin

(call body)

goto l1;

end

end

(we have used a low-level syntax in order to emphasise how such a construct
might be compiled and to show how we need not rely upon an identical con-
struct being provided by the language). In each case, the arguments to the
routines are all assumed to be blocks. The operation call is assumed as a prim-
itive which calls a block; it is our analogue of the do message in Smalltalk.
(We do not use a Smalltalk-like set of constructs because we want to show how
such an approach can be adopted by another language; we are attempting to
be language- and implementation-independent.)

The two examples above show how blocks can be used to implement pro-
gram structures with a little support from an underlying language. The exam-
ples show that closures can be used to implement anonymous blocks of code
which are to be passed as arguments to other closures. Because a closure can be
passed as a first-class entity, it can be used to implement a great many struc-
tures including co-routines. The addition of closures into a language affords
that language considerable flexibility. It is possible to pass routine pointers as
arguments in C++, but closures in the sense of the Smalltalk, SELF, Omega
or LISP sense cannot be defined and manipulated, for the reason that, as noted
below, there are some problems that arise from their inclusion.

146 5. Methods

By passing a block into a low-level procedure or parameterising constructs
in ways akin to Smalltalk, SELF and Omega must make procedural closures
a first-class concept in the language. This fact has a number of implications
for the language. The language must not only explicitly represent closures or
blocks, it must also provide mechanisms for their manipulation; manipulation
of blocks or closures implies that methods can be higher-order in the more
conventional sense of that term. There must be ways of creating blocks when
required and for determining whether a closure is required for future evaluation.
There are choices to be made as to where closures are allocated; if they are
allocated in the heap, there can be performance penalties to pay.

There is a trade-off between the admittedly high utility of closures and the
implications of their inclusion. Once a decision as to the representation and
allocation of closures has been reached, it is worthwhile to consider whether
the chosen representation and allocation policies should not be adopted for all
closures, not just those that are to be passed as actual parameters.

The approach to higher-order functions exemplified in this section has its
origins in early work on functional programming (see [18] or [39] for more
examples). Not only does it permit the parameterisation of syntactic structures
in such a way that they can be modified or adapted at runtime, it also opens
the way to lazy evaluation. When evaluating its arguments lazily, a function
only evaluates those expressions supplied as arguments when a value is needed.
In a conditional, it is essential to evaluate fully the predicate expression for
it is necessary to determine which sub-expression to evaluate next (the sub-
expressions provided to represent the then- and else-parts of conditionals). If
the predicate evaluates to true, the then-part can be evaluated; the else-part is,
in this case, not evaluated (it could be passed, unevaluated, to another function
if required). Blocks naturally lead to the examination of the implications of lazy
evaluation, a task which we defer for it remains very much a research issue.

5.4.6 Methods and Inheritance

The interactions between methods and inheritance are discussed in this sec-
tion. The method hierarchies in Theta [46] are considered first, followed by the
method combiners of CLOS.

The Theta language [46] introduces a hierarchy among its routines. The
language distinguishes between methods and routines; the language also makes
a distinction between modules and classes. In Theta, classes define new data
types while modules collect items together in the familiar way; classes obey a
reflexive class–subclass relationship which is interpreted in terms of type and
subtype. In this language, it is possible to define free-standing routines; that

5.4 Environments and Closures 147

is, there is notionally a separate semantic category for methods and for rou-
tines. The language is covariant, which explains why the subtype relationship
is reflexive, and is strongly typed (see Chapter 6 for more details on types
in object-oriented languages). The covariance of Theta also has an interesting
implication for the language: it becomes possible to arrange routines in a hier-
archy. The hierarchy is derived from the types of the formal parameters of the
routines. Although it is not used by other structures in the language, and it
can be used in type checking at compile and at runtime, this is an example of
how a constraint on parameter type can be related to the inheritance structure
of a language. This relationship then allows the classification of another part
of the language. It also points to the fact that there will probably be a num-
ber of equally viable alternatives should it be decided to employ hierarchical
structures to classify free-standing routines and to classify methods.

CLOS defines a set of method-combining forms, of which before and after
methods are the easiest to explain (the concept of before and after methods,
as well as wrappers, was first introduced in FLAVORS [20]; FLAVORS is still
available as part of Franz LISP’s Allegro Common LISP distribution and is
still in use).

The idea is that code can be written which will alter the behaviour of a
called method. The kind of method that we have so far considered is called a
primary method in CLOS; it is the method that does all the work. However,
it might happen that, at some stage in the definition of classes belonging to
a particular inheritance hierarchy, we need to do some things before we call
the primary method; we might want to do some things after we have called the
primary method; we might even want to do things before and after the primary
method is called. The primary method might be perfectly useful on its own, a
fact which precludes addition of code to the beginning and end of the method’s
body. CLOS, and FLAVORS before it, permit the user to define before and
after methods to perform these tasks.

When a primary method is called in CLOS, a search is made up the in-
heritance chain to find all the before methods that have been defined for this
method. If there are any, they are called in the order most specific to most
general. When all before methods have been called, the primary method is
called and the major computation is performed. Next, a search is made for the
after methods. If there are any such methods defined for this primary method,
they are executed in increasing order of specificity, the reverse of before meth-
ods (they are executed from most general to most specific). Before and after
methods wrap around a primary method, providing additional (additive) func-
tionality.

At any point in the inheritance chain, before and after methods can, in
principle, be defined for a primary method. This is true even if the primary is

148 5. Methods

inherited. This allows the programmer to define code that will run before or
after the primary without needing to define a primary method.

CLOS provides more of these method-wrapping methods. For example, it
provides a progn combination which executes methods in order and returns
the value returned by the last method (the progn combiner is a descendant
of the wrapper combiner in FLAVORS), as well as combiners that perform
arithmetic on the results. CLOS even allows the programmer to define new
method combiners for themselves. There is much that can be said about method
combiners, but we do not have space here; the interested reader is therefore
advised to consult [65].

The method combiners discussed so far are all procedural in the sense that
they directly operate on some notion of a state. That state is implicitly provided
in the case of before, after and progn combiners. There are other combiners,
however, that work in a more declarative way. Method combiners are the only
way to access ancestor classes in a linearised multiple inheritance scheme such as
that used by Common LISP. Otherwise, because of the arbitrary arrangement
of ancestor classes, it is not possible to access ancestors in a principled fashion.

5.5 Static and Dynamic Binding

A natural consequence of the organisation of a class hierarchy is that methods
are to be found at various levels in the structure. The obvious and universal
method for program construction involves either the redefinition of methods
that appear higher in the inheritance structure (over-riding) or the use of these
higher methods in the bodies of methods that are defined at lower levels or
as local methods in their own right (inherited methods). The second of these
options involves a search for the specified method and it is possible for more
than one method to be retrieved during the traversal of the inheritance struc-
ture. The first option also interacts with inheritance for, when over-riding, it
is essential to determine precisely which method is being over-ridden. Under
single inheritance, matters are simple, but some forms of multiple inheritance
make matters more complex, as was seen in the last chapter with respect to the
general case of a slot. The third case, method inheritance, is most fundamental,
for it is necessary to inherit at least a signature in order to over-ride a method
(this is necessary in order to verify that the over-riding method’s type is cor-
rect), and it is necessary to inherit the method proper if it is to be employed
locally or to be used as an inherited method (used complete, in a sense).

The problem that faces us, here, is that of binding the correct method to
the “hole” for it in the current class. When a method is to be inherited, it

5.5 Static and Dynamic Binding 149

must be located. The location of a method can be static in the sense that the
desired method is stated explicitly and statically, or it can be dynamic in the
sense that the name of the method is specified, together with its type, and the
system is expected to locate the method to be used.

The process of method location is related to that of downcasting, as de-
scribed in Chapter 2, because downcasting is the process of mapping a su-
perclass onto a subclass (supertype to a subtype, i.e.); downcasting, therefore,
involves a search which is similar to inheritance. However, inheritance inter-
acts with the methods defined in higher classes in an inheritance structure. In
particular, there is the question of how to find a method. Let us set this in a
context.

Consider two classes, C and C1. Assume that C defines a method m. Assume
also that C is the superclass of C1. Class C1 inherits m in the usual way; all
instances of C1 can call m because it forms part of the definition of their class.

Now, let us assume that class C1 defines a method m for itself. Perhaps the
new m is defined using next-method. We will adopt the convention that we
will write m1 to refer to the version of m defined in C1. Thus, when we define:

v1: C1;

...

v1.m(. . .);

The call to m is a call to m1, the specialisation of m defined in C1. These two
cases should be obvious and should be clear to the reader. Now, consider the
following case. Let us assume that we have two variables, v and v1, defined as
follows:

v:C;

v1:C1;

Moreover, let us assume that we have a method defined as:

method foo (c : C) . . . c.m(. . .); . . .

Finally, assume that we call foo, supplying an instance of C(v) as its actual
parameter:

foo(v)

Clearly, inside the body of foo, c.m will refer to the m defined in class C. All
is, therefore, as we would expect.

Now, what happens if we call foo and supply v1, an instance of C1?

foo (v1);

Which version of m is called? Is it m or m1?

150 5. Methods

We can argue in one of two ways. We can argue that the actual parameter
specifies C as the class of the argument, so we must expect to call the method
that is defined in C (the method we call m). Since C1 is a subclass of C, any
instance of C1 must also be of type C. The other argument says that we have
supplied an instance of C1, not an instance of C, so we must apply the method
defined in the subclass (the method we call m1). Which of these arguments is
correct?

The answer is that both are correct and neither is–it depends upon the
language. Each argument gives a different way of associating methods with
instances of classes.

The first argument gives an approach called static or early binding. Under
static binding, the method to be called is the one associated with the class
that appears as the type of the formal parameter. Thus, in the case of method
foo, for the reason that the formal parameter c is defined to have type C,
the method call inside the body of foo must refer to method m (the method
defined in class C). Thus, the method c.m inside the body of foo is bound to
the method defined in class C. This binding can occur as soon as the type of
the formal parameter is known and is, for this reason, called static binding.

The alternative approach is called dynamic or late binding. Under this
approach, the choice as to which method is actually called is delayed until the
call is to be made. This takes place at runtime. When the call is made, the class
of the object which has been passed as the actual parameter is determined and
the method associated with that class is the one that is called. That is, when
the call is made, the method m that is associated with the class of the actual
parameter is bound to c.m. Since an instance v1 of class C1 has, in this example,
been passed to foo, c.m is bound to m1. Because binding is performed when
the actual type of the formal parameter, c, is known (i.e., when v1 is bound
to c), the process is called dynamic binding. It is useful to note that dynamic
binding is also a technique for handling polymorphism.

The difference between static and dynamic binding can be seen in the fol-
lowing example:

V: C;

V1: C1;

V := v1;

v.m(. . .);

(the assignment assumes that downcasting between non-heap allocated in-
stances of a class is permitted). Now, which m is called? Under static binding,
the m defined in C will be called. Under dynamic binding, it will be the one
in C1. The binding of the class to v in the assignment is critical to the behav-
iour of the program. We could also cite the following case in which an instance

5.5 Static and Dynamic Binding 151

of a subclass is bound to an element of an array whose element type is the
superclass (again, a binding problem):

a1: array(. . .) of C;

v1 :C1;

a1(2) := v1;

a2(2) .m(. . .);

Again, static and dynamic binding will yield different results.
Many languages (Smalltalk, Java, Sather, Eiffel, for example) employ dy-

namic binding, while others, notably C++, opt for static binding.
In C++ static binding is the default, but methods can be defined as dy-

namically bound by means of the virtual construct. When defined as virtual in
a superclass, a method with the same name must be defined within each sub-
class and it must have the same number of parameters; each parameter must
be of the same type in the subclass as in the superclass. (In other words, the
method defined in the subclass must have the same signature as the one in the
superclass.) When a call is made to a method that has been declared to be
virtual, the class of the instance that has been bound to a parameter, variable
or container element is used to determine the method that is actually called.

The C++ view is that static binding constitutes an “optimisation” tech-
nique because it does not impose the overhead of using a lookup (or dispatch)
table when determining which method to execute. Instead, calls to static meth-
ods are compiled into direct calls to the methods involved. The C++ program-
mer is required to determine which methods to “optimise”, for those methods
to be dynamically bound must be explicitly marked as being virtual, while
statically bound methods are unmarked. (Some languages are able to employ
runtime tests to determine which methods can be statically bound.) Often,
though, static binding can give the wrong results in an object-oriented context
because it will invoke the method associated with the type of the reference to
the object, not the object proper. Given that dynamic binding is a property
that is almost always seen as a defining property of an object-oriented language,
the reliance on static dispatch in C++ is questionable.

The way static binding works is as follows. The compiler uses the type of the
instance reference to access the class of the object which is statically declared
as being bound there. It then compiles a direct call to the method, inserting
the instructions comprising the call sequence directly into the object code.

Most modern languages adopt dynamic binding while older statically typed
ones generally prefer static binding. Static binding is easier to type check and
generates simpler code. However, static binding does not allow one to specialise
behaviours as one would wish: one always has the behaviour associated with
the superclass. Dynamic binding allows the behaviour associated with the class
of an instance to be exhibited.

152 5. Methods

For dynamic behaviour to work, there must be some runtime mechanisms
for associating an instance with its type and for associating an instance with
the methods of its class. Both of these requirements impose a slight overhead
which static binding avoids. The former requirement amounts to determining
what the type of an object is. The second requirement forces each instance
of a class to be associated with a table of methods for its class; when a class
is compiled, this table is constructed. The table can contain pointers to the
entry points of those methods that are locally defined. The table will include
pointers to those methods which over-ride methods defined higher in the class’s
inheritance chain. In our example, the table for C will contain a pointer to m,
while the table for C1 will contain a pointer to m1. In some implementations,
the method table also contains pointers to the methods that are inherited; in
others, the table contains a pointer to the superclass method table. The second
approach avoids the first’s need for runtime search at the cost of additional
storage (which must be allocated on a per-subclass basis, and which, therefore,
might be more costly than a simple pointer chase). The runtime representation
of instances of each class must contain a pointer to the appropriate method
table, in addition to containing a reference to their class (type).

There are at least two ways to implement dynamic binding. We will consider
the mechanisms adopted in Smalltalk ([34], pp. 561 et seq.) and in C++ ([8],
pp. 74 et seq).

In Smalltalk, when a message (method call) is received by an object, the
message’s selector is looked up in the method table associated with the class
of the object. If the method selector is present, the associated CompiledMethod
object is called and the method is executed. If the method selector is absent, the
superclass of the class is located and its method table consulted. The search
through the superclass chain continues until either the specified selector is
found or the end of the chain is encountered. If the former holds, the method is
executed; if the latter is true, a runtime error is raised–there is no such method.
This is clearly a dynamic process, but does it implement dynamic binding? The
answer is in the affirmative. The Smalltalk scheme first directs the message to
the current object and then continues up the inheritance chain if the method
is not locally defined. If Smalltalk were typed (it is not), this scheme would
work and would implement dynamic binding because it performs the method
search on the object not on the class corresponding to the reference to the
object. Dynamic binding must work on objects, not on types, because it calls
the method associated with the object currently bound to the reference, not
with the static type of the reference. Smalltalk implements dynamic binding.

C++ defaults to static binding. Its virtual function (method) mechanism
allows dynamic binding to be implemented at low overhead. The basic idea in
C++ is that the virtual functions in a class define an array of pointers to the

5.5 Static and Dynamic Binding 153

functions. This implies that a call to a virtual function is just an indirect call
through the array. The array, called the virtual function table, is implemented
once per class and contains pointers to the virtual functions for the class. The
array collects the pointers to the virtual functions that are defined, possibly by
inheritance, for the class. The compiler has to determine which virtual methods
are defined for each class; it also has to be rebuilt whenever the virtual methods
for a class are changed. The advantage of the approach is that it is fast.

The process works at compile time. Virtual methods are collected by the
compiler as it scans the inheritance structure for a class. This scan directly
structures the virtual function table, but does not insert any pointers to the
code which implements the virtual methods. A pointer from the structure which
represents instances of the class at runtime is set to point to the class’s virtual
function table–there is only one such table stored at runtime per class. Later,
when the entry points of the code implementing the virtual methods are known,
they are entered into the table. Before the entry points are known, the compiler
can generate code to call virtual methods by indirecting off the virtual function
table.

EXERCISES

5.1. Explain what a method is and what it is used for.

5.2. How does the internal state of an object relate to its (effective) meth-
ods?

5.3. The effective methods of an object are exactly those methods that
are inherited by that object. Given that class A has methods a1 and
a2; class B has methods b1 and b2; class C has c1 as its sole method.
If A is the superclass of B and also of C (but C is not a subclass of
B), list the effective methods of class B and of class C.

5.4. Two methods defined in the same class have the same name. What
can be used to distinguish them?

5.5. The difference between send super (or just super in some languages)
and inner is that the former re-directs the method invocation re-
quest upwards towards more abstract classes, while inner re-directs
requests downwards. Which mechanism is better for:

a) modularity;

b) extensibility;

c) verifiability?

154 5. Methods

5.6. Explain the difference between static and dynamic method dispatch.
Which of the two methods more “naturally” gives the kinds of be-
haviour associated with objects?

5.7. Give an example of an iterator.

5.8. Explain how iterators relate to encapsulation and inheritance.

5.9. What is the point of private methods? Moreover, what is the point
of a private constructor? Give an example of a private constructor.

5.10. Outline an implementation of static and of dynamic method dis-
patch.

5.11. How are virtual methods implemented in C++? Is this method gen-
eral? In your answer, consider:

a) the interaction between virtual methods and inheritance;

b) what happens when there are polymorphic variants of a virtual
method.

5.12. CLOS has popularised the concept of the wrapper. Explain what a
wrapper is and explain how it is used.

5.13. CLOS, and other languages, use generic functions. Explain what a
generic function is and describe how they are interpreted. In ad-
dition, you should consider how generic functions might be imple-
mented; what are the problems that must be solved to obtain a good
implementation?

6
Types I: Types and Objects

6.1 Introduction

It is impossible to examine any kind of programming language without a dis-
cussion of types. Even languages such as Scheme, LISP, Smalltalk, or even
Basic, which are considered by many to be “type–less”, must admit of a typed
account. One reason for this is that the untyped (type-free) λ-calculus has 110
consistent models, thus demonstrating that untyped languages produce un-
predictable results (normalisation cannot be guaranteed). A second reason is
that the operations in such languages, say that of addition, are typed: for the
addition function to be correctly applied, its arguments must be numbers.

Addition has to be redefined if an addition operator is to be applied to,
say, strings; such a redefinition would result in a concatenation function. Thus,
it makes no sense to say that LISP, Scheme, Basic, and so on, are “type–
less” or “untyped”, for they are more correctly described as being dynamically
typed (or, more strictly, their variables, parameters and function returns are
more correctly described as being dynamically typed). The reason for this is
that types play an essential role in the evaluation of the expressions of such
languages, but the type of an arbitrary expression is determined dynamically
at runtime rather than statically at compile time.

We are used to the concept of compile-time type analysis and assignment
based upon our experience with languages such as Pascal, Ada, the Algols, and
others. Java and C++ are examples of class-based languages which are sta-
tically typed. Many modern object-oriented (typically class-based) languages

156 6. Types I: Types and Objects

such as Eiffel and Sather, Beta and Theta, require a compile-time type checking
process to be undertaken. However, and this might come as a surprise, some
languages have a semantics which renders compile-time type checking only a
partial check on the program text. This is not for reasons of separate compila-
tion, but for properly semantic reasons. As will be seen below, some languages
require both static and dynamic checking because of constraints imposed upon
method argument types. We will discuss this and its implications in depth
below.

On the other hand, prototype-based languages have often been dynamically
typed; SELF, Obliq and Kevo are all dynamically typed, although Omega [10]
is statically typed. Dynamic typing seems to fit better with the general ideas of
prototype-based programming; it appears that prototype-based programming
is better suited to exploratory or experimental programming than with pro-
duction methods. In addition, the concepts of cloning and aggregate formation
seem to be at odds with the concept of static typing. We do not know of an ex-
ample of one that is even partially statically typed. We are aware of JavaScripts
facilities for prototype-based programming; however, these features are coupled
with inheritance, not delegation, a property it shares with Omega [10].

The Omega language introduces types into a prototype-based language [10].
In Omega, every prototype corresponds to a type and vice versa. Omega uses
inheritance between prototypes rather than delegation, so a subtype hierarchy
is defined by inheritance between prototypes. Omega prototypes can be repli-
cated by cloning just as in other languages. Omega prototypes can be altered
by copying and modification prior to instance formation. These last two sen-
tences justify the sense in which Omega is considered a prototype language.
The reader is advised to consult [10] for a complete discussion of this interesting
language.

It is often construed that there is an intimate connection between classes
and types; prototypes, it will be remembered, take a different approach and
define collections that are more loosely defined. In this chapter, we concentrate
on the relationship between classes and types as evidenced in Eiffel, C++,
Java, Sather, Beta and Theta and other languages. In the case of Beta and
Sather, it is necessary to observe that there is a further distinction between
implementation and type, but we do not consider that here.

The identification of classes with types is extremely common and is derived
from the analogy with Abstract Data Types that was discussed in Chapter 2.
In some languages, the concept of type and subtype is mixed with the con-
cept of the definition of code and its reuse. In a similar vein, when considering
polymorphism, some languages, again thinking of C++, identify redefinition
and overloading. The confusion, which probably results from too much opera-
tional thought, can lead to a lack of clear distinction between concepts in some
languages.

6.2 Inheritance and Types 157

It will be clear that this chapter is almost exclusively about concepts in
class-based languages. There is no reason why a prototype-based language
should not be equipped with a type system, particularly one which permits
the definitions of new types. The fact is that, to my knowledge, there is, at
present, no such language.

One significant reason for emphasising class-based over prototype-based lan-
guages is that they typically lack type definition facilities. This has the con-
sequence that slots can hold methods or values of primitive types or can hold
references to objects (prototypes). Objects can be defined in a way analogous to
that in class-based languages, but this does not necessarily guarantee that the
object pointed to by a slot is related to the desired prototype object; it is nec-
essary to resort to programming conventions and to other devices, whereas in
a strongly typed, class-based language, slots are typed and the correspondence
between types and slots can be verified. Furthermore, the cloning operation is
one which typically occurs at runtime while subtype definition is part of the
compilation process; thus, it cannot be guaranteed that a desired object will
actually be constructed at runtime.

There is no inherent reason why a prototype-based language should not
include type definition facilities (Omega allows slots to be typed, for example).
However, the concept of a type appears to go against the grain; moreover, the
relationship induced by delegation between prototypes does not correspond to
the type/subtype relation found in typed languages. The reason that typing
seems to go against the grain of prototype-based languages is that the relation-
ships between prototypes are richer than the simple sub/supertype relation;
prototypes are based upon similarity along a variety of dimensions, not just
one. However, because of the richer, metric-based similarity concept in proto-
type languages, the notion of imposing a unique type upon an object appears
impossible; the most one can do is to say that when regarded in such and such
a way, an object is closer to X than to Y. Such an approach does not appear
to suit the stricter scheme assumed for class-based languages which conform to
conventional type disciplines much more readily. This view of object similarity
has implications for such matters as object transformation and correctness and
require new ways of construing these processes and properties.

6.2 Inheritance and Types

We have already discussed the connection between classes and Abstract Data
Types (ADTs). Classes and ADTs encapsulate their data and allow operations
to be defined in a modular fashion over these data. Operations are always

158 6. Types I: Types and Objects

bundled together with data, so there is encapsulation at that level. In addition,
classes must be instantiated in order to be of use; similarly, a type must be
instantiated in order to produce a value that can be manipulated by a program.
Classes and types are often thought of as the same thing, and this is a prevalent
view in object-oriented language design. It is important, therefore, to consider
what happens under the type view when we engage in subclass definition (often
called derivation or type extension).

It should come as no surprise that the classes-as-types view treats subclasses
as subtypes. In the original work on ADTs, no mention of subtypes was made;
occasionally, the idea of a part-of relationship between ADTs is hinted at. How-
ever, when we define a subclass of a given class, we are specialising the definition
of the type, so we are forming a subtype. The relationship between a class and
its subtypes is akin to that between, say, the concept of integers, non-negative
integers and natural numbers. For the integers, we have all whole numbers
between +∞ and −∞, the operations of addition, multiplication, subtraction
and a kind of division (remainder–we only have a full version of division when
dealing with). For non-negative numbers, we have all the integers between
0 and +∞ (inclusive), but have operations addition, multiplication, remainder
and a kind of subtraction (positive difference) defined as

n
 m = |n − m|
(where |x | is the absolute value of x). Finally, we have the naturals, the whole
numbers, n, such that 0 < n ≤ +∞, and the operations addition and multi-
plication (we could define subtraction and division operations, but would have
problems when deciding what to do with n − n and n mod kn, for arbitrary
natural k). What we note in each case is that the range of objects with which
the type deals is increasingly restricted and we also see that, in each case, we
progress towards an increasingly impoverished set of operations (we also move
from a relatively complex algebraic structure, a field, down to a simpler one,
a group). A similar effect is seen when considering successive subclasses of a
given class.

When we consider the relationship between a class and its subclasses, the
subtype relation is often brought to mind. One reason for this is that we nor-
mally expect it to be possible to substitute instances of subclasses for instances
of a class (their superclass). A subclass is a more constrained form of its su-
perclass; equally, a subtype is a constrained form of its supertype, hence any
property which holds of a superclass must a fortiori hold of any of its subtypes.

The concept of a subtype is closely associated with that of type extension.
The reason for this can be seen if we return to the basic picture of what a
type is. We can consider a type to be a set of entities and a set of operations
(axioms). Application of one of the operations to an element of the set yields

6.2 Inheritance and Types 159

another element of that same set (the set is closed under the application of
the operations). We can extend an algebra by introducing new operations (new
axioms). This makes the operation set applicable to fewer cases, note, so the
extension is more specialised than the original. The axioms of the type from
which an extension has been derived still obtain in the extension; there are
more theorems that hold in the new type (algebra), but the original set of
theorems are still true in the extension, as they are in the original algebra. The
type extension operation corresponds to the derivation of a subclass from a
class.

At this point, it is essential to record that the subtype and supertype re-
lationships are often considered to be reflexive. That is, a class, C, is always
considered to be a subtype or a supertype of itself. This convention should
make understanding many of the issues relating to sub/supertype relationships
easier to understand (particularly variance).

What we have seen is that classes can be substituted in limited ways and
that instances of a subclass can always be treated as instances of a superclass.
This allows us to pass parameters whose class is a subclass of the declared type;
we can bind variables in other contexts in a similar fashion. This amounts to a
limited form of polymorphism (from the Greek, meaning “having many forms”).
It allows operations to be applied to objects of a type that is different from
the one they were designed for, provided that certain conditions are met (up
casting being the primary one).

Operations normally specify the number and type of their formal parame-
ters; they also specify the type of their outputs as necessary. If we define an
operation which will perform the same action, but which is able to accept in-
puts of types other than those which have been specified (modulo constraints
on well-typed expressions), we have an example of a polymorphic operation.
We will discuss polymorphism in object-oriented languages in more detail in
Section 6.8 below; for the time being, we note that polymorphism is introduced
for methods as a natural consequence of inheritance.

6.2.1 Telling What the Type Is

We have seen that if a language uses dynamic binding, it is essential for the
type of instances to be made known at runtime. This imposes constraints on the
representation of instances at runtime; in particular, it requires that instances
contain a reference of some kind to their class (type). Semantically, we need
a runtime function, say, which, when applied to an instance, yields its class
(type). The provision of this function as part of the language (as a predefined
or library function) is also extremely useful in practical terms.

160 6. Types I: Types and Objects

Very often, it is useful to know what the type of an object (instance) is so
that some operations can be performed on it. For example, if one is construct-
ing an interpreter for a language, an abstract syntax tree might be constructed
as the runtime representation of the program being interpreted. The nodes of
the tree might be represented by instances of classes, each class representing
a different type in the abstract syntax. Thus, there will be a node for condi-
tionals (if, case or switch, perhaps select), and one each for the various
iterative constructs (while, until, etc). Each node will have certain methods
in common, but some nodes will need to be treated differently. If we have an
expression language (like LISP, Scheme, Dylan, Icon, or Algol68), we can de-
fine an evaluate method for each node class. (The evaluate method will need
to be dynamically bound so that we evaluate the right node.) This method will
evaluate the subtree dominated by the node currently being evaluated and will
also have to access various kinds of non-local variable and, perhaps, a symbol
table.

To evaluate an expression in the language, we call the evaluate method of
the topmost tree in the abstract syntax tree. Control percolates towards the
leaves of the tree as the evaluate methods call the corresponding methods in
their subtrees. Eventually, a result is returned.

On the other hand, we might be writing an interpreter for a statement
language; that is, based upon a division between statements and expressions
(e.g., Algol60, FORTRAN, Pascal, Ada, and C in its most common usage–C is
based upon expressions which are “converted” to statements). Statements are
usually described as constructs that transform the state of a program.

For example, the if statement of Algol60 and Pascal is used to determine
which of a maximum of two states is to follow the state in which evaluation
of its conditional expression occurs. Expressions are considered to be value-
producing entities. Values and states are considered to be different kinds of
entity in statement-based languages. Expression languages do not make this
distinction and every construct returns a value (even iterative constructs).

The division between statements and expressions in a statement-based lan-
guage causes some problems for the hypothetical interpreter writer. Whereas in
the expression language, every node was associated with an evaluate method,
we are now faced with the problem that some nodes (nodes representing ex-
pressions) have an evaluate method, but others (nodes representing statements)
do not. (To be fair, in both kinds of language, declaration nodes behave still
differently.) Nodes representing statements control the state of execution; they
do not produce values. There is a seeming problem for it is impossible to define
an evaluate method that can be applied to every node in the tree. Some nodes
will return a value, others not. We could define an execute method and allow
every node to be associated with it. The execute method performs the same

6.2 Inheritance and Types 161

task as evaluate but does not return a value; instead it updates the state as
appropriate. However, a decision is now required as to whether an expression
is a kind of statement or vice versa. If one looks at the semantic equations of
most languages, no such distinction can be made. It seems more reasonable to
maintain a distinction, at least if theoretical purity is desired, between the two
kinds of node. This implies that, at runtime, it will be necessary to make a
distinction between nodes that represent statements and those that represent
expressions.

In C++, such a distinction is the job of the programmer, for the language
contains no constructs that will allow type discrimination. Here, one normally
associates an integer with each type and defines a method that returns the
type of the object. This is clearly a messy and error-prone technique. Other
languages, happily, provide better methods for telling the type of an object at
runtime.

In a dynamic binding language, object types must be represented at run-
time. In so-called untyped, or (more correctly) dynamically typed languages
(LISP, Scheme, Icon, Basic) objects are tagged with type information so that
expressions can be correctly evaluated. We should, therefore, expect that lan-
guages from these two families will provide constructs for runtime type discrim-
ination and this is, indeed, true. LISP and related languages employ runtime
type tags so that primitive routines can determine whether the data that has
been supplied to them is of the correct type. Common LISP, therefore, pro-
vides a number of functions and predicates for returning and testing the type
of an object; Scheme, however, at least in the R4RS [25] version, specifies no
function for returning the name of an object’s type. In Common LISP, though,
type-of returns the name of the type of its argument, and typep returns true
if the name of the type of its first argument is the same as its second argument.
One slight problem is that some objects in Common LISP are of a type whose
name is not necessarily what one expects, and implementations vary as to the
names which they assign to some of these types. For example, t and nil (true
and false, or true and the empty list, depending upon context) are both of type
symbol, while an integer is of type fixnum; floating point numbers can have a
variety of implementation-dependent names.

Other languages adopt an approach to type discrimination based upon the
provision of predicates to test the types of objects, and upon functions which
return the names of types (note that type names are returned, not the type
itself–see below for discussion). Java supplies a predicate, instanceof, which
takes two arguments, the first being an instance of some class, the second being
the name of a defined class. Thus, an example call of instanceof might look
like:

162 6. Types I: Types and Objects

instanceof (foo, AClass) ;

The call to instanceof will return true if and only if the first argument, foo,
has a type whose name is that supplied as the second argument, here AClass.
It is important to note that, by transitivity of inheritance, the class name that
is provided as the second argument can be the name of an ancestor of the
class that is actually the class of foo. Thus, when using instanceof, one must
exercise a little care.

In addition to type-handling functions, Common LISP provides a case-like
construct, called typecase, for testing types. This construct is also defined in
Modula-3. The provision of this construct exemplifies the second major ap-
proach to type discrimination. The construct is similar to the case statement
that is familiar from Pascal and Ada. Whereas in an ordinary case statement,
branches are labelled with literal integer constants (or symbolic names stand-
ing for integer constants), the branches are labelled with the names of types.
Thus, in a neutral, Algol-like language, we might have:

typecase foo of

when integer A;

when integer_ptr B;

when boolean C;

otherwise D;

end typecase;

We assume that foo is some object or variable whose type we wish to deter-
mine. The branches of the typecase are labelled by the types integer, integer
pointer and boolean. If foo is of type integer, action A is taken and control
falls out of the construct. If, however, foo is of type integer ptr, B is per-
formed. If the type of foo is something other than integer, integer pointer

or boolean, the (optional) otherwise branch is taken and D is executed.
The basic control flow of the typecase construct can be seen to be similar

to the more familiar case statement.
The example shows that a user-defined type, in this case integer ptr, can

appear as a type name (a class name in an object-oriented language). It would
be of little use for a construct such as this to fail to recognise the range of types
that can be defined in the programming language. Therefore, the name of any
type, whether it is predefined (defined by the language) or user-defined, can
serve as the basis for discrimination.

There are variations on the typecase theme, naturally enough. For exam-
ple, in Dylan, there is a select expression which normally can be considered
as a multi-branch conditional of a fairly standard kind. Rather than operating
as a variety of case expression, Dylan’s select acts more like cond, the so-
called McCarthy conditional in LISP, because the branches are labelled with

6.2 Inheritance and Types 163

the names of predicates which are applied to the value returned by the control
expression. The control expression can be annotated so that different kinds of
value can be obtained. For example, in:

select(foo by instance)

...

end select;

the control variable, in this case foo, is evaluated in terms of its type. The
expression containing foo is evaluated in order to determine the class of which
foo is an instance. The control expression, by means of this qualification, re-
turns a value that can be used to satisfy predicates defined over type names.
The select expression in Dylan can contain a default case, as can typecase.

These two approaches to type discrimination are not the same. Some
might believe that the simple approach based upon predicates and type name-
returning functions would be more flexible and, therefore, more easily used.
Others might argue that a construct like typecase is better because it insu-
lates the user from all inessential details regarding the way in which type names
are represented at runtime. We believe that the second argument is better and
that typecase-like constructs are preferable to the other methods. One rea-
son for this is that it does not require the programmer to pass around objects
standing for the names of the types in the program. It must be noted that only
the names of the types are thus manipulated; real types cannot be handled
in such a way. However, when using the functions and predicates approach, it
is important to remember that type names are introduced into the program-
ming language as a new domain of denotable values. Unfortunately, there is
little that can be done with these names: they can be supplied to predicates
and functions and returned from functions. It is very rare for a construct in
the language to be provided that returns the referent of the type name (the
definition of the class whose name it is, for example). Thus, a new domain of
values is introduced into the language, thus complicating its semantics, but
this domain is of very little utility for the reason that there is very little that
can be done with these values. The typecase approach reduces this. It is, and
will always be, necessary to have some way to refer to types within a program:
names, particularly of classes, are the obvious and most efficacious choice. We
need to refer to types (classes) in order to create instances of them as well
as to discriminate between them. However, unless we are able to manipulate
types (classes) like other types (integers, reals, etc.), the impact upon the lan-
guage of the need to manipulate and test these names should be restricted as
much as possible. The typecase construct acts as such a limit; it restricts the
area within a program in which type names are used. The alternative allows
type names to be regarded as ordinary values, able to be passed between ex-

164 6. Types I: Types and Objects

pressions. Thus, under the functions and predicates approach, type names can
appear almost anywhere in a program.

6.2.2 Polymorphism

Polymorphism is one of the more important concepts in object-oriented lan-
guages. When introducing class-based languages in Chapter 2, I briefly intro-
duced the idea that an instance of a class can be substituted at runtime for
an instance of one of its subclasses. This process, called downcasting, is one of
the topics discussed in a later section (Section 6.8), so further discussion will
be deferred except to observe that downcasting is a source of polymorphism.

The term polymorphism was introduced by Strachey [72, 71] in the 1960s
while working on the CPL language. The word itself is derived from the Greek
and means “taking many forms”. Strachey’s intuition was that a procedure
could be defined so that the number or types of its arguments differed. The
“meaning” of the procedure remains the same, but the number or types of its
inputs vary. Polymorphic procedures often require many definitions of a proce-
dure; this entails that the same identifier is used to name a set of procedural
objects, each of whose signatures is different from the others.

6.2.3 Signatures

A signature is the complete definition of the input and output types of a pro-
cedure or function, so:

int × int → int

is the type of integer addition, while the predicate (function) which tests
whether a character is in upper case has the signature:

char → boolean

and the logical and operation is:

boolean × boolean → boolean

The × symbol represents the Cartesian product of types and → represents a
function with inputs on its left-hand side and outputs on the right. It is usual
for a procedure to have exactly one signature. A polymorphic procedure is
associated with more than one signature, there being one signature for each
valid collection of types.

For example, an arithmetic function could be defined to accept pairs of
integers, pairs of reals, one each of real and integer, two complex numbers,

6.2 Inheritance and Types 165

one complex and one real number, and so on; the result of the function would,
correspondingly, be altered depending upon the input types. Each definition
of this function has the same name. The compiler (or interpreter) is faced
with the task of determining which form of procedure to apply given a set of
inputs; this can be determined statically at compile time. If the concept of a
procedure which has more than one signature is considered, it is a short step
to the introduction of type variables. That is, to the introduction of variables
whose domains are types themselves. Type variables can be bound, typically
at compile time, to types, thus requiring types to be denotable values in a
fashion analogous to the usual ones (e.g., integers, reals, booleans). It is quite
reasonable that we might write a new polymorphic arithmetic function with
the following signatures:

int × int → int
int × real → real
real × real → real

complex × complex → complex
complex × complex → real
complex × real → real

However, type variables allow one to define a much simpler signature. Given
type variables, α and β, we can define a signature:

α × β → α

When compiling, we examine the actual types of the call to the function (the
types of the actual parameters) and instantiate the type variables accordingly;
the case in which α and β are identical must be taken into account. This account
of polymorphism is often called genericity, and was first used in functional
languages.

We could define three primary kinds of polymorphism, as follows:

1. Generic employs type parameters (hence, type variables) in the definition
of a prototype or template routine or class which is then instantiated by
supplying appropriate values (types) for its type parameters.

2. A form, sometimes called inclusive polymorphism, formed by a partial or-
dering on types. Such a relation is automatically induced by the inheritance
relation obtaining between parent and children classes. If S is the parent
or ancestor of C, a method m defined for S is equivalent to a family of
methods, one for every type below its point of definition.

3. Ad hoc polymorphism. This is formed by the production of a new behav-
iour for each element of a set of related signatures (as in the polymorphic
arithmetic function above). This is often called overloading. The choice as

166 6. Types I: Types and Objects

to which behaviour to select is based upon the types of the arguments
supplied to the procedure.

In the definition of ad hoc polymorphism, we intend that a single name
is associated with a set of signatures whose cardinality is greater than one.
The behaviours might be related as in the case of overloading the addition
operation, but are different because of the differences implied by different sig-
natures. When considering ad hoc polymorphism in a class-based language, it is
important to differentiate overloading and redefinition. Redefinition replaces a
behaviour that is inherited by a new one of more specialised type; the signature
of a redefined method is typically different from the method whose behaviour
is being redefined.

It is worth noting that slots and (local) variables can have signatures. The
signature of a variable is its manifest (declared) type.

6.3 Generic Polymorphism

Generic polymorphism has always been available in the Ada programming lan-
guage for procedure and package definitions. Genericity is the basis for the
function and class templates in C++, and it is used in Eiffel in order to im-
plement generic classes. Genericity is considered to be a kind of polymorphism
because it takes a piece of code–a class, procedure or function–which imple-
ments an algorithm or collection of algorithms in a type-independent fashion
(or in terms of an abstract, most general type) and which employs a type sub-
stitution mechanism to produce instances which are specialised to particular
types. Viewed in one way, genericity introduces a form of overloading. Viewed
in another, it permits the generalisation of a component by abstracting from
specific types. What makes genericity different is that it introduces explicit
type parameters or type variables into a language to support type substitution
or instantiation. Because it is a process based upon substitution, relationships
between actual types under instantiation cannot always be maintained.

In languages of this kind, type parameters are introduced via special con-
structs. In C++, procedural objects and classes can be parameterised; in Eiffel,
only classes are subject to type parameterisation. In Ada, any type declara-
tion, under appropriate circumstances, can be parameterised; the appropriate
circumstances are provided by the generic constructs (procedures and pack-
ages/modules).

The idea underpinning type parameterisation is that type parameters are
to be bound to actual types. An actual type, here, is represented by the built-in
types of the language (integer, character, boolean, etc.), together with types

6.3 Generic Polymorphism 167

defined by the user as classes. In some contexts, an actual type can also be an
array or record structure. The actual type is bound to each type parameter and
the construct can then be instantiated and checked for correctness. A problem
with genericity is that instantiation of the parameterised construct does not
guarantee correctness of the result; it is necessary, as a second phase, to verify
the resulting construct. A parameterised construct is similar to a template. The
checking that must follow instantiation consists of type checking (the template
can easily be checked for syntactic well-formedness); it is necessary to verify
that the operations performed on the actual types in the instantiated construct
can be performed, that result types are as expected, and so on.

It is usual to employ genericity in constructs that define routines and that
define classes or types. Classic examples of parametric types are lists, trees, sets
and maps. We require lists of integers, lists of reals, lists of arbitrarily complex
structures. Rather than define a list type for each of these cases, it is best to
define a single, parametric type. Thus, we might define such a list roughly as
follows:

class list[T] is . . .

head() : T;

tail() : list[T];

cons(o : T) : void;

...

end class;

where head, tail and cons are methods which return the first element, return
the list with the first element removed, and add a new element to the list,
respectively (in the LISP family, they are called car, cdr and cons, respec-
tively). The class is given the name list and a type parameter is specified
inside square brackets. The type parameter represents the type of the elements
to be stored in the list; thus, we require (constrain) the list to hold objects that
are of some type we are referring to as T (we assume that type quantification
is universal). When appropriately instantiated, instances of this class will hold
elements of some actual type. The type parameter is given an arbitrary name,
here we have called it T, but it could be ElemType, T1, τ , or anything else (in
the functional language Hope [19], there was a convention that type variables
had Greek names, and in Miranda [78] they are denoted by asterisks).

The methods are defined as follows, each is associated with a name (head,
tail, cons) and each is assigned a signature. The head and tail methods
have no arguments, hence their formal parameter list is empty. However, they
return values. In the case of head, it returns an instance of the element type,
so its return type is specified as T. The tail method returns the list with the
first element removed, so it returns an object of type list[T]. Finally, the

168 6. Types I: Types and Objects

cons method adds an object to the list, so it has a formal parameter, o, whose
type is specified as T. The cons method works by adding an element to the list
represented by the class, so no value is returned (to get at the elements, one
needs to call the other methods).

This defines a parametric type, list[T]. We need an operation to instanti-
ate the type. This is done by supplying an actual type to the template. Given
list[T] we might have some construct of the general form:

intlist : list[integer];

to perform the instantiation. This will create an instance of list[T] by sup-
plying the integer type as the actual type. The elements of intlist will be
integers.

It is possible for parametric types to have more than one type parameter.
Parametric types can have an arbitrary number of type parameters; they have
as many as are necessary to define the type correctly. We could define a type
to represent pairs of objects by:

pair [T1 , T2]

This type has two type parameters, one for each of the component types. The
pair type can be instantiated as:

pair [integer, integer]

pair [integer, real]

pair [real, real]

and so on. Each instantiation assigns a type to the type parameters. In the
first and last cases, the two type parameters have been assigned to the same
type: integer in the first case, and real in the last. This is perfectly legal and
the actual type will be substituted for the appropriate type variable.

It is also possible to define parametric types in terms of parametric types.
For example, when parsing natural language, some parsers will return all legal
parse trees, letting a later stage resolve any ambiguities that have been encoun-
tered (e.g., the sentence “The boy saw the girl with a telescope” has two legal
parses: one in which the boy uses the telescope to see the girl, and one in which
the girl has the telescope). To implement this, a list of trees could be created.
This implies that we have a new parametric type which could be defined as
something like the following:

list [parseTree [NodeType]]

This defines a list whose element type is a parametric type called parseTree.
The parseTree type has the parameter NodeType which represents the type of
the nodes that will eventually be stored in the tree.

6.4 Overloading and Over–riding 169

Given that parametric classes define classes and that they can be instanti-
ated to produce instances (objects to be manipulated), it is interesting to ask
whether parametric types can act as the roots of type hierarchies just as ordi-
nary classes can. In Eiffel [53], this is permitted, so we can have one parametric
type appearing as the superclass of another (the subclass will be parametric
by inheritance, of course); it is also permitted in C++ [74], although one is
somewhat discouraged by the ungainly syntax. The Theta language [46] also
permits parametric types to form hierarchies. Note that, when parametric types
can form subclasses, it is possible for the superclass of a parametric type to
be a non-parameterised class. If a type hierarchy contains type parameters, it
can be instantiated in many ways; this means that the hierarchy will be more
generally applicable than otherwise. It also allows for the partial instantiation
of class and their subclasses; this restricts their general applicability, but it
creates a hierarchy that can still be modified by means of instantiation, an
operation that has many benefits over explicit construction.

In the languages Ada, C++ and Eiffel, type parameters are employed in a
restricted form. There are no features for treating type parameters as arguments
to operations other than definition and instantiation.

Before ending, it is worth noting that there is no inheritance relationship
between A[X] and A[Y], even if there is such a relationship between X and Y.
To make such a claim is an error (cf. Eiffel and Java which make such claims).

6.4 Overloading and Over–riding

Overloading is an operation that has often been included in programming lan-
guages for many years. For example, routines that write values to files must
be polymorphic for the reason that they must take inputs of different types in
order to permit integers, characters, reals, and so on, to be written. This is an
example of overloading. The compiler implements the write operation in terms
of one procedure for each type; the compiler selects the actual procedure to be
used to implement the write operation based upon the type of the argument
to the call to the generic write operation. Addition, in most languages, can be
performed over a variety of different numeric types. In C++, there are the int
float and double types, as well as short, long and unsigned forms of integer.
Addition is always denoted by the symbol “+”. This is another familiar exam-
ple of overloading; again, the compiler selects an implementation based upon
the type of the arguments to the generic operation. As far as the programmer
is concerned, there is only one procedure or operation in each case; there is
more than one routine that implements the operation, each routine having a
different (unique) signature but the same name.

170 6. Types I: Types and Objects

An oft-cited property of object-oriented languages of all types is their sup-
port for polymorphism. This derives from two sources in class-based languages:

– method over-riding or redefinition, and

– method overloading.

In the former case, there are often constraints on method signatures, while, in
the latter, there are frequently none.

It is important to distinguish properly between over-riding in the sense of
redefinition and overloading. C++, for example, confuses these cases, as does
Java. The Eiffel report [53] is very careful to avoid any confusion and the
language contains explicit constructs for differentiating between renaming and
redefinition.

A method, m1, redefines another method, m2, when m2 is defined in a su-
perclass of the class in which m1 is defined and both m1 and m2 have the same
signature or related, but their behaviour is different. Redefinition is the redef-
inition of an inherited method’s behaviour. The signatures of the original and
the redefined methods need not coincide. Under redefinition, the redefining en-
tity renders the redefined one invisible to the class performing the redefinition;
the redefining entity over-rides the original, in other words. This is a key point
about redefinition: it is the replacement of an inherited item by a new one that
differs in some significant way; we have also uncovered the relationship between
over-riding, overloading, and soon, with overloading; it is a knot that is often
left untied.

When methods are redefined, the relationship between the original and the
redefined method might be important semantically. This is controlled by the
language’s variance rules (we discuss it in more detail below in Section 6.6.1).
Here, we note that many languages (C++, Java, Smalltalk, for example) impose
no constraints upon the types in overriding method signatures. Eiffel, Sather,
Beta and Theta impose constraints upon signatures. Constraints on signatures
are important because they impact upon the ease with which the language can
be used and they have implications for the correctness rules for programs. In
general, though, the constraint is that an over-riding method must have the
same arity as the one which it over-rides.

It is important to note that anything that can be inherited can be redefined:
data and methods can be redefined. Redefinition can involve the replacement of
a signature either of a method or of a data slot; it can involve the replacement
of the body of a method while its signature remains invariant. In languages like
Eiffel that contain pre- and post-conditions, these assertions can be redefined
in a subclass; for example, a pre-condition can be strengthened or weakened.

6.4 Overloading and Over–riding 171

On the other hand, overloading applies to methods only. For example, the
addition operation “+” can have a signature:

int × int → int

as well as:
int × real → real

where the behaviour is that of adding its arguments and returning the sum
as a result. Similarly, printing routines can be supplied for a variety of types,
basic and otherwise; their signatures must, necessarily, differ, but the result of
applying each is, in an appropriate sense, “the same”, namely the printing of
a value. In overloading, the definition that matches the argument types most
closely is used as the body of the routine that is actually called; to make
overloading work, the types of the actual parameters must be computed in
order to select the appropriate behaviour or definition.

The simplest case of overloading occurs when methods with the same name
but different signatures are defined in different classes; thus, in a class repre-
senting character strings, we might define a method called write and in a class
representing a rational or complex number, we also define a method called
write. The method that is actually called at runtime will depend upon the type
of the object supplied to it as an actual parameter; this, in a statically typed
language, can be performed at compile time. Overloading can also occur in the
same class as that in which the method being overloaded is defined; it can occur
in a subclass of the defining class. It is important to distinguish simple over-
loading from redefinition because overloading does not render the overloaded
method invisible at the point where another case of that method, one with a
different signature, is introduced. It is necessary to observe that both write
methods are visible to derived classes and to other contexts (unless they are
overridden by redeclaration).

From these definitions, it can be seen that, in dynamically-typed languages
like Smalltalk, there can only be method redefinition. Method overloading can-
not occur in terms of the language because the types of arguments are deter-
mined at runtime; in such a language, overloading is implicit because methods
respond to arguments of different, though legal, types in the correct way. In
other words, in a dynamic language, overloading is an entirely implicit process.
(One might also consider the matter as being that dynamically-typed methods
are always implicitly ready to select an implementation that is appropriate,
provided that the actual arguments have types that are legal for it.)

In [53], Meyer describes the difference between redeclaration and redefin-
ition; indeed, he sees the process of replacing an inherited item as being far
wider than in many languages, C++ and Java in particular. Redeclaration is,

172 6. Types I: Types and Objects

Meyer argues, more general a concept than redefinition, the latter being a spe-
cial case of the former. In both cases, new features (slots, methods, etc.) are
not introduced, but the new item simply over-rides the original declaration of
the inherited entity.

In Eiffel, it is possible to introduce a feature (slot, method) that is marked
as being deferred; that is, its definition is not supplied at the point where
that feature is declared. This gives a mechanism for defining abstract classes
and deferred features must be given a complete definition in some subclass of
the class in which the deferred feature is defined. When this is combined with
redeclaration, it is sometimes the case that two or more features must be merged
into a single one; alternatively, the inherited implementation of a feature might
be discarded or undefined. The former joins two or more features to form a
single, new one. The latter is a way of producing new deferred features from
instantiated ones. In order to effect a join, it is necessary, in Eiffel, to rename
and then to undefine the unwanted features and to rename or redefine the
required one. In order to make a feature deferred, it is necessary to employ the
deferred annotation.

Before we look at root classes, it is worth mentioning a peculiarity of some
LISP-derived object-oriented languages, CLOS and Dylan being the best ex-
amples. In these languages, it is possible to define what CLOS refers to as an
eql parameter. This parameter specifies that its argument must be identical to
the value specified for the parameter. For example, if we have a procedure p

with a parameter of the form:

v eql 100

when p is called, the actual parameter that is to be bound to v must have the
value 100 or an error is called.

This might seem to be either a variation on default parameters or just
plain silly. However, eql parameters are extremely useful and cater for a case
in which one wants to select a method based on the value of a particular
parameter. In the context of a generic LISP function, or in the context of a
polymorphic method, eql methods come into their own. As we have seen, when
a polymorphic or multi-method has many implementations, it is necessary to
choose between them according to their input types. The question arises as to
how discrimination within a type can be effected. That is, given a method m

with a signature Σ, say with:

Σ = (α × β × γ) → δ

method m can be applied to a triple of values of type:

(α × β × γ)

6.5 Languages with Root Classes 173

This is clear. What happens if we want to discriminate between two values,
say b1 and b2 of type β? With the standard scheme found in most languages,
such discrimination must be made with a conditional within the body of m.
This might be inconvenient at times. Recognising this, CLOS supports the
eql parameter which allows dispatching on values of a type. To discriminate
between the two values of β, we might write method signatures as follows:

m1 : (α × (b1 = β) × γ) → δ

m2 : (α × (b2 = β) × γ) → δ

We define a method for each discriminated value in addition to the other meth-
ods that make use of polymorphic definition. The two new methods use eql
methods (eql is denoted, here, by the = symbol) to discriminate between b1

and b2.
We can now consider the role of root classes in class-based languages.

6.5 Languages with Root Classes

Some languages come with a root class. Their inheritance graph for objects
that can appear in user programs has a single root. In Common LISP, CLOS
identifies this class with the value t, the value true. In Java, the root class is
called Object, and in Eiffel it is called ANY. In these languages, all user objects
are indirectly derived from the distinguished root class. This makes it possible
for the root class to define structures and methods that can be employed by all
other objects. One example is to put some of the instance initialisation code
into root class methods; another is to put instance printing methods in the
root class. In Java, the root class is declared as implementing the interface
required for object serialisation–that is, the conversion of objects to and from
a representation suitable for storage on a medium such as a disk file; this can
involve traversal of the graph of objects if the object being serialised contains
component objects. Thus, any class derived from the root class automatically
inherits methods for serialising and deserialising objects.

Root classes also have the advantage that methods can be defined in terms
of the root class and downcasted to particular subclasses. For example, we can
define a list class and implement a method which adds an element. The element
is to be passed to the method as a parameter. The type of that parameter can
be given as the root class. Assuming that the method to add an element to a
list is called cons, and that the root class is called Object, we could define the
method roughly as follows:

method cons (elem : Object) is ... end method;

174 6. Types I: Types and Objects

This method can be applied to an object of any class that is derived from
Object. This means that it is possible to construct lists that contain elements
of any type derived from the root class. We have a kind of polymorphism
because downcasting is used when the method is called.

The existence of a general root class imposes the requirement that all user-
defined classes must be derived from the root class. This has the implication
that variables of the root type can be declared, and procedure and method
parameters can be declared as being of that type. This automatically ensures
that an instance of any class can be assigned to such a variable or passed to
such a procedure or method. Similarly, if the root class is specified as the return
type of a function, that function can return a value of any class whatsoever.
This is a feature that is particularly useful in the definition of container classes
(list, set, etc., classes). This is a form of polymorphism which allows variables,
parameters and functions to refer to any object that is defined.

In pure object-oriented languages like Smalltalk, all objects are represented
as instances of classes. Under such a scheme, elementary values such as integers,
characters, booleans, and even methods are represented in terms of classes. If
there is a root class, elementary values, as well as these additional types of
object, can be represented and manipulated more easily when a root class is
present.

6.6 Polyadicity and Default Parameters

As noted above, one can conceive of procedures with the same name but with
different numbers of arguments. One might want to define an addition or mul-
tiplication function which accepts a variable number of arguments. A one-adic
addition function (function in one argument) would return its argument, while
a two-adic one would behave as expected; an n-adic one would compute the
sum of its inputs. Similarly, a one-adic multiplication function would be the
identity on its input; the two-adic version acts as expected, while an n-adic
one would return the product of its arguments. Such functions are said to be
polyadic. All arithmetic functions in Common LISP are polyadic; the language
provides a number of mechanisms for defining polyadic functions, thus affording
a considerable flexibility, albeit at a higher cost in procedure call.

Polyadic procedures are polymorphic, but their polymorphism is restricted
to variation in the number of arguments which are instantiated when the pro-
cedure is called. Polyadic procedures very often are defined in terms of a core
of required parameters and a collection of optional ones. When a call is made
to such a procedure, its required parameters must be instantiated; that is, for

6.6 Polyadicity and Default Parameters 175

each required formal parameter, there must be a corresponding actual para-
meter. Binding of optional parameters is less strict. When called, an optional
parameter might or might not be instantiated; this implies that the number of
actual parameters supplied to a call to a polyadic procedure can vary.

Immediately, we are led to a problem: when an optional parameter is omit-
ted from a call to a polyadic procedure, what is the value that should be
employed in the body of the procedure? If a required parameter is omitted,
an error must occur because the procedure is defined in terms of its required
parameters. The answer is that default values must be supplied, either by the
language or by the programmer. In Common LISP, the default value for all op-
tional parameters is nil (the empty list); this standard default makes the task
of defining polyadic procedures easier for one does not always have to worry
about defaults. In other languages, an explicit default must be given (it can
be optionally given in Common LISP, of course). C++ and Ada allow default
parameters to be specified. Thus, in Ada:

function add(n : in integer, m :in integer := 1)

returns

integer is ...

and in C++:

int add(int n, int m = 1);

are equivalent polyadic forms of an integer addition function. In each case, a
default value is supplied.

In languages that are statically typed, a default value of the appropriate
type must be supplied. The constraint on the value is required in order that
the procedure’s signature will be well-typed according to the languages typing
rules. In languages which require additional, runtime type checking, default
values must satisfy all type-checking constraints imposed.

The types of the formal and corresponding actual parameters, required or
optional, must match according to the well-typing rules of the language under
consideration. Polyadic procedures are permitted to have different numbers of
actual parameters, but the types must always match. In this sense, polyadic
procedures represent a restricted form of polymorphism.

Default values for parameters can be defined in PL/1, a language that was
initially defined just before Strachey introduced the concept of polymorphism
and which has been revised since then. Polyadic procedures can be defined in
Common LISP (and hence CLOS), Ada, C++ and Eiffel. In each case, a default
value is associated with optional parameters.

In object-oriented languages, default parameters are often used in defining
constructor functions. If a class constructor can, in principle, accept between
one and three integers, it is possible either to define three separate constructors,

176 6. Types I: Types and Objects

or to define a single polyadic constructor with one required parameter and
two optional ones. Optional parameters can also be used in ordinary methods
where a well-defined default value is known. Otherwise, the interaction between
polyadicity and classes (and prototypes, for that matter) is weak; polyadic
methods are really just a notational convenience.

6.6.1 Variance

Variance is a set of rules which govern the way in which methods can be over-
ridden. Variance is interesting because some rules can endanger the type safety
of a language (Eiffel is one such language). There are three standard sets of
rules:

– covariance;

– contravariance; and

– agnosticism or non-variance (sic).

The first two terms and their implications are considered in detail in the next
few paragraphs. The concept of “agnosticism” or “non-variance” are not stan-
dard terms; they both denote an empty set of variance rules. Many languages,
Smalltalk, Java and C++ among them, are agnostic or involve “non-variance”.

Covariance and contravariance are properties of typed languages, specif-
ically typed class-based languages. To understand them, let us consider the
following case. Assume that we have two classes, S and C, where S is the
superclass of C. Each class defines a method, m. In S, m is defined as:

m(arg :A) ...

while in C, m is (re)defined as:

m(arg : B) ...

An important design issue is what restrictions are to be placed on the type of
argument to m. That is, what are the restrictions that must be placed upon A

and B? There are at least the following possibilities:

– no restrictions are imposed;

– type B must be a descendent type of A;

– type A must be a descendent type of B; and

– type A and type B must be the same type.

6.6 Polyadicity and Default Parameters 177

The second case is called the covariant rule; the third the contravariant rule.
There is no standard name for the first case: agnosticism and non-variance, are
just two of the names that appear in the literature (agnosticism appeals most
to me).

The covariant rule is so–named because, in the child class, the types of
the arguments in redefined methods are children of the types in the parent’s
method. Inheritance “varies” in the same direction for both cases. Contravari-
ance gets its name from the fact that inheritance “varies” in opposite directions
for methods and classes. Of the two, contravariance might seem, at first sight,
to be the more theoretically attractive. In object-oriented languages, polymor-
phism means, inter alia, that a slot or parameter can be bound to objects of
any child type of their declared type. When polymorphism is combined with
dynamic binding, the actual type of an object will trigger the corresponding
method. That is, the method that is actually called depends upon the actual
type of the object that is bound to a slot or parameter; the actual type might
be the declared type or one of its descendants.

Under contravariance, we can bind an instance of a descendent type to a
slot or parameter and all method calls will still function correctly for the reason
that a descendant can cope with the arguments at least as general as those of
its ancestor. A child object is, in every possible sense, a valid instance of the
ancestor class because we are using inheritance to implement subtyping. Let
us unpack this a little to see what is meant.

If we have a pair of classes such that one is the ancestor of the other ac-
cording to the inheritance relation, we know that the child can be substituted
for the ancestor if inheritance is interpreted as subtyping. The reason for this is
that slots defined in the ancestor, as well as methods, are valid for the child. In
other words, the child class knows how to respond to messages requesting read-
ing or updating of slots inherited from its ancestor; similarly, the child knows
how to invoke the corresponding methods. In this sense, the child is a valid
instance, in every sense, of its ancestor. If we consider the two as types, then
a subtype can always be substituted for a supertype. In both cases, viewing
inheritance as the subtype relation is the critical step.

Covariance implies that static type checking might be insufficient in the
worst case. It is for this reason that we have qualified statements about the re-
lationships between classes and types and subclasses and subtypes. Contravari-
ance is a completely type-safe rule when applied to parameters. The opposite
case holds for return value types; covariance is a type-safe rule when applied
to return value types, and contravariance causes problems.

Unfortunately, many real problems require covariance. The following exam-
ples taken from the Eiffel FAQ [54] demonstrate the use of covariance. Consider
the following definitions:

178 6. Types I: Types and Objects

class PLOT is

method add (arg : DATA_SAMPLE) is ...

and:

class PLOT_3D is

superclass (PLOT);

method add (arg: DATA_SAMPLE_3D) is ...

where PLOT is the superclass of PLOT 3D and DATA SAMPLE is the superclass of
DATA SAMPLE 3D. This example requires covariance, under which rule it works
well. The example would fail if a PLOT 3D object were bound to a PLOT slot
and we then tried to add an instance of DATA SAMPLE to it (call its add method
on an instance of DATA SAMPLE, that is). The reason for the failure is that the
example implements code reuse and not subtyping, while, at the same time,
applying a method defined in the superclass to an object of the descendent
class as if the descendent object were a true subtype.

class HERBIVOR is

slot diet: LIST[PLANT];

method eat (food : PLANT) is ...

and:

class COW is

superclass (HERBIVORE);

method eat (food : GRASS) is ...

where PLANT is an ancestor of GRASS. This works exactly as we would wish.
The compiler must prevent us from binding a COW object to a HERBIVORE slot
and trying to make it eat a PLANT. However, we should not be doing this.

It is also illuminating to consider the container object bound to the diet slot.
There is no need to redefine this slot in descendent classes. The reason for this is
that in the covariant redefinition of the argument of the eat method, the diet

slot will always contain an object that can be eaten (e.g., instances of GRASS
for instances of COW). If we had contravariant redefinition of the argument of
eat, it would be necessary to make the type of the diet container more general.

Sather employs the contravariant rule. It also uses separate mechanisms for
subtyping and code reuse. It only allows dynamic binding on genuine subtypes.
One consequence is that Sather programs will contain concrete types in an
attempt to model covariant problems. Unfortunately, in Sather, a concrete type
is one that cannot be further subtyped (subclassed), thus reducing the potential
for reuse.

Eiffel, on the other hand, like Beta, uses the covariant rule. In Eiffel, any
type can admit of subtypes, subject to checks made by the compiler. Because

6.7 Downcasting and Subtypes 179

they implement the covariant rule, both Eiffel and Beta treat the examples
above correctly.

C++ and Java are, with Smalltalk, agnostic about the relationships between
types. CLOS and its relatives employ a totally different approach, but are still
to be regarded as agnostic.

6.7 Downcasting and Subtypes

Subclasses have a significant bearing upon the generality and utility of instances
of classes in a class-based object-oriented programming language. The type
structure interacts with other facets of the language, as we will now see.

The first point to note is that if C1 is a subclass of C2, then all instances
of C1 are also instances of C2. This impacts upon such matters as parameter
passing and variable assignment (including assignment to array elements and
slots). Let us consider the case of parameter passing in methods. Let us assume
that variable v1 is declared to be of type C2:

v1 : C2;

If we have a method with the following formal parameter specification:

c.meth(..., v : C1, ...)

then we can call c.meth with v1 as an actual parameter:

c.meth(... , v1, ...) ;

The reason for this is that all instances of C1 are also instances of C2 because
C1 is a subtype of C2. Given that C1 is a subtype of C2, it makes sense to
permit any instance of C1 to appear where an instance of C2 is required.

Just as instances of C1 are permitted to appear as actual parameters cor-
responding to formal parameters which have been declared to be of type C2,
so assignment between the two types is permitted:

v1 :C1;

v2 : C2;

v2 := v1;

This is a legal assignment in many statically typed object-oriented program-
ming languages. On the other hand, given the above variable declarations, the
assignment:

v1 := v2;

180 6. Types I: Types and Objects

is not typically legal for the reason that an instance of a class is not an instance
of any of its classes (the equivalence only runs upwards, not downwards).

When an assignment of an instance of a class to a variable, v, whose type
is a superclass of the instance’s type, access is only permitted to those slots in
the instances which are found in the superclass. For example, if C1 has slots
s11 and s12, and methods m11, m12 and m13, and its superclass C2 has s21 as
its only slot, and m21 as its only method, only s21 can be accessed after the
assignment. Similarly, methods m11, m12 and m13 are all invisible and cannot
be called from v. (The same applies if v is a formal parameter or if v is a
pointer to an instance of C1.) What happens when assigning to a variable of
more general type is that the internal structure of the subclass which is not
inherited from the superclass is hidden from use.

The same happens when we pass an instance of a subclass via a parameter
whose type is declared to be a superclass. It also happens when we point to
an instance. Let C1 be a subclass of C2 and let ptr be a pointer to C2. We
can point to an instance of C1, but only those slots in the C1 instance that are
inherited from C2 can be accessed via ptr. This amounts to an implicit type
conversion. We are seeing an object of one type as if it were of another. Indeed,
this implicit type conversion is called upcasting.

Upcasting is the process of casting (converting or coercing) the type of a
variable from a sub- to a superclass. The reason that only the slots in the
superclass are visible (accessible) is that only those slots would be visible if
one actually had an instance of the superclass. Upcasting can be applied to
variables, array elements, formal parameters, result parameters and pointers;
it can also be applied to slots.

The converse of upcasting is downcasting. In downcasting, a variable (etc.)
is bound to a value which is an instance of a class that is a subclass of the
variable’s original class. Thus, if C1 is a superclass of C2 and v1 is a variable
of type C1, and v2 a variable of type C2, then the assignment:

v2 := v1;

downcasts the instance of C1 to C2. What we should see is those slots defined
in C1 (i.e., the whole of v1). The problem comes when we want to access
slots defined in C2. The variable v2 holds an instance of a class that does not
have these slots, so what is to be done? Are default values to be used? Is an
attempt to access those slots an error? Indeed, should access be permitted once
downcasting has occurred? Downcasting is useful because it allows symmetric
binding of classes. The problems just mentioned indicate that it might be a
concept of relatively limited utility.

The concept of self-adjusting covariance is of some interest, although it is
not often encountered. The like Current parameter annotation in Eiffel and

6.8 Review 181

the Same pseudo-type in Omega [10] are two examples of this concept. The
symbol same, in Omega [10], refers to a pseudo-type; the self variable is of this
pseudo-type. In Omega, the same type is defined as follows. If a prototype P

contains a method m, expressions of type same can be assigned to variables of
type P and the ancestors of P . Such assignments are safe because the method
m can only be executed as a result of a message to an object of class P or
to a descendant of P (which will inherit m). Expressions of type same can be
assigned to variables of type Object, the root type for Omega. The rule also
applies to methods of monomorphic type. The receiver of a monomorphic type
P is always known to be an object of type P , therefore the type same has the
same meaning as P within methods of P ([10], p. 143). Reference to the class in
which a method is defined is also the defining characteristic of the like Current
declaration in Eiffel.

6.8 Review

The identification of classes and types, together with the concept of separating
types from implementations, provide rich and powerful tools for the construc-
tion of new types. However, there are some problems which are often ignored.
It is possible to define product and sum types in an object-oriented setting.
Sum types are defined by introducing a branch in the type mechanism and
are manipulated by means of downcasting. Product types are defined in terms
of arrays or by the definition of a simple pair type, together with their injec-
tion and projection functions. Arrow types appear to be supported by methods.
However, it will be seen that the support for arranging methods into hierarchies
(as noted in the last chapter) is very poor; the best language, in this respect,
is Beta. It might be argued that the programmer, should they want such oper-
ations or representations, can implement them if they want. However, this is a
matter of implementation. It is possible, though tortuous, to implement objects
in FORTRAN-IV or in macro assembler if one really wants; we are dealing with
Turing equivalent structures, so implementability should come as no surprise.
What is required is a notational mechanism for such definitions. In each of the
above, we are constrained to implement these types in terms of new objects;
we introduce new objects into the program’s abstraction hierarchy, sometimes
at locations which are awkward in the sense that they interact with the rest of
the program’s organisation (this is one place where mixin inheritance can play
a role).

What object-oriented programming gives us is encapsulation and subtyping,
together with automatic method finding (not selection all the time in Eiffel). A

182 6. Types I: Types and Objects

branch in the type hierarchy gives us a sum type, but at the cost of a new class.
Products are restricted to Cartesian products and must, again, be implemented
by new objects. It could be argued that the organisation of methods into an
appropriate hierarchy is an application- or domain-specific matter; it would be a
start if we could base such abstractions upon a pre–existing set of relationships.

Finally, we come to the notion of the type itself. It is, of course, central
to efforts in programming language design. In a class-based language, types
correspond to the natural objects in the application domain. What we do is
to define new classes according to our intuitions about the organisation of
the domain. We are typically unable to define constraints that must apply,
relationships that obtain between classes or, better still, between instances.
The ability to form complex objects from more simple ones in ways that differ
from the subtyping and inclusion (part-of) relations is also required. These
relations stretch the concept of type.

EXERCISES

6.1. Consider a variable data slot, x, of type T , where T is a class. Which
are the types that can be assigned to x?

6.2. What is the type of self?

6.3. The best interpretation for classes is as types. Discuss.

6.4. The Sather language interprets classes as types. It also requires that
classes be defined in abstract terms, by declaring data and method
signatures, and also, where appropriate, as implementations. Are
there advantages to this separation of implementation and type?

6.5. What is wrong with x : T ;x : T1? If T is the supertype of T1, how
should x : T ;x : T1 be corrected?

6.6. Languages like Java and Eiffel differentiate between so-called refer-
ence types and immediate types. How do these kinds of type differ?
One of the selling points for Java is that it does not support pointers;
is this really true?

6.7. In a class-based language with reference and immediate types, there
are different ways to implement class instances. What are they? How
does this distinction between the kinds of types interact with type-
changing mechanisms?

6.8. Give three examples each of:

a) ad hoc polymorphic functions/procedures;

6.8 Review 183

b) parametric polymorphism in routines and classes.

Give one example of inheritance polymorphism.

6.9. Define a stack of integers class in an appropriate language. Do it as
follows:

a) As a normal (not polymorphic) class;

b) As a polymorphic class which is then instantiated.

Now define a class for a stack of vectors. Explain how it has been
done and what the effects of polymorphism have been.

6.10. Justify polymorphism in programmatic terms. That is, what need
does polymorphism in its various forms satisfy? How does polymor-
phism relate to the size of the namespace?

6.11. Explain how parametric polymorphism differs from inheritance poly-
morphism and how they can co-exist.

6.12. How does polymorphism relate to abstract classes? In particular,
consider an abstract parametric polymorphic class: is such an entity
useful?

6.13. If a language has a root class, does it need parametric polymorphism?

6.14. If a language has a root class, can it omit parametric polymorphism
and rely upon inheritance polymorphism?

6.15. Why is typecase (or a construct like it) preferable to a typeof

function?

6.16. How does the introduction of typecase or typeof affect the value
domains of an object-oriented programming language?

6.17. If a language contains a typecase operation, what must the in-
stances of a class record? Discuss the alternatives.

6.18. Container classes are generic. How can they be expressed in a lan-
guage with a root class as well as in one that does not have such a
class? What is required in a root-less language for the concise rep-
resentation of containers?

6.19. What are the problems with downcasting in a statically dispatched
language?

6.20. Explain how a parametric polymorphic class defines a set of classes.

7
Types II: Types and Objects–Alternatives

7.1 Introduction

In this chapter, we will take the notion that classes are types very seriously.
We will attempt to discover some of the confusions that are possible when this
equivalence is assumed only partially, as is the case in many current class-based
languages.

First, in Section 7.2, the relationship between types and implementations
are examined in greater detail. Section 7.3 discusses how implementation de-
tails can be hidden. Section 7.4 is concerned with type operations and how
they relate to classes. Finally, Section 7.5 is about containers and objects; it is
primarily about modules and their relationship to classes.

7.2 Types and Implementations

Our view of types is that they are algebras and, therefore, composed of a
collection (often a finite set) of operators (an operator domain) and a collection
(often a finite set) of objects upon which the operators act.

In class-based programming, classes are equated with types and instances
of types are equated with objects. Classes define new types. Classes can be
instantiated to produce objects; objects are elements of the type defined by
their class. The instances of classes constitute the objects of the type defined

186 7. Types II: Types and Objects–Alternatives

by the class to which they belong. Classes define an abstract collection of
entities and the operations which can be performed upon them. Instances of
classes, objects, belong to the type. A variable or a pointer which can refer to
an instance of a class, or an array whose elements can be instances of a class,
input parameters to a method or procedure or the value represented by the
return value of a function or method can take the type which is represented by
the class of those instances (or instances of the ancestor types of their type).
It is, strictly speaking, incorrect to talk of the type of an instance, for an
instance is an object which comprises part of a type. Thus, a class introduces
the operations and objects from which that type is defined. Instances of classes
belong to that class (obviously!) and are of the type defined by that class; the
type is a property of the instance. Because of the definitional nature of the class
construct, objects are uniquely associated with classes (hence types) when they
are created; the association is static in the sense that, if we view the extension
of a class, the type of the elements of the extension is already determined.

The reader should note that there are other views as to how the concept of
type should be interpreted in programming languages in general and in class-
based languages in particular.

Given this view of types, the process of constructing a class-based program
is one, therefore, of constructing new types and instantiating them to produce
objects which can be transmitted between instances of other types, between
program components and which can have variable slots updated to reflect their
changing state. Instances correspond to values of the types represented by their
class. However, as part of the process of class (type) definition, it is very often
the case that implementation details must be provided; this is so that the class
can be executed when instantiated. A notable exception to this is the definition
of an abstract class; here, methods are only equipped with signatures, not
definitions.

The process of programming with classes involves the construction of new
types, whose properties are transmitted to subtypes (to subclasses) and the
definition of implementations which are propagated in a similar fashion. If we
regard the specification of a class’s signature as the definition of its interface
and the definition of the code bodies for methods and iterators as the definition
of its implementation, when subclasses are defined, both the interface and the
implementation are propagated to them from the classes upon which they are
based. The definition of a class’s signature amounts to the specification of the
types of its data slots and the specification of the signatures of the methods
it defines. One reason for this lack of clean separation between interface and
implementation is so that any class (except an abstract one) can be instantiated
at any time; another is that, by maintaining the two together, all relevant
information is defined in one place and can easily be seen by a programmer

7.2 Types and Implementations 187

(perhaps less of a pressing need with the advent of more powerful support
tools); another, and rather more cynical view is that the two are not separated
because the need for separation has not been perceived.

It has already been noted that the Sather language makes a distinction be-
tween types and implementations. Sather distinguishes two concepts for what,
in other languages, is considered to be inheritance, and, hence, a single concept.
These concepts are subtype definition and implementation inclusion. Subtype
definition consists of the definition of a new abstract type which, as an abstract
type, cannot be instantiated. When an implementation is required, the Sather
programmer must define a concrete type which is permitted to include other
concrete types. In effect, Sather distinguishes between implementations and
types (represented by abstract classes).

Snyder [64] has discussed the implications of separating subtyping and im-
plementation inclusion. Very often, inheritance in class-based languages is used
as if it were a relationship between implementations, a conflation which can
cause confusion and, without proper control, can lead to programs that are
difficult to understand and which reveal too much information about imple-
mentations (we consider an example where this must be avoided in the next
section, Section 7.3). In [64], Snyder considers the relationship between classes
defining a DE queue and a stack. He observes that one can be made into a sub-
class of the other with relative ease. If the stack class is implemented in terms
of the DE queue (i.e., the stack is defined as a subclass of the DE queue), there
is a superfluous operation which adds an item to the “end” of the container
holding the stack (we assume that stack elements are added to the “front” of
the container). This implies that the relationship between the implementations
of the two classes is not that of inheritance in the sense of subtyping. Instead,
it is one of implementation inclusion because the implementation of the DE
queue can be defined from that of the stack by the addition of the operation
which adds items to the “end” of the container. However, the DE queue class
represents a subtype of the stack class; it is a subtype because it has more
structure in the form of the additional method. The relationship between the
interfaces, or type definitions, is the converse of that exhibited between the
implementations.

With care, subtype and implementation can be kept in step; this is an
implementation matter, of course. Semantically, we have an interpretation of
inheritance that conflates–or even confuses–implementation and subtype. There
are other reasons why we might want to separate an interface description from
an implementation, or subtype definitions from their implementations. One
important case is that in which a type has more than one implementation. The
CORBA standard for distributed objects [63] makes such a possibility explicit.

In most object-oriented languages, an interface is typically associated with
a single implementation. For example, a list type will have an interface spec-

188 7. Types II: Types and Objects–Alternatives

ification which defines the operations that can be performed on it (see below
for an example, Section 7.3). In C++, for instance, the implementation of a
class is fixed once and for all when it is defined; a similar case obtains for Java,
Smalltalk and for many other languages. However, we might want a represen-
tation (implementation) of lists in terms of cells stored in a heap or in terms of
fixed-size vectors. The choice as to which implementation is most appropriate
depends upon factors such as: is there an a priori upper bound on the length of
the list, must access time be constant (and hence worth wasting some memory
on a suitable implementation), can cells be recycled, is there sufficient time to
access a heap, and so on. The balance of these factors will determine which
implementation is to be preferred. In a similar fashion, a set can be imple-
mented as a vector, a list, a table or a tree, depending upon the properties of
the elements to be stored. If there is an ordering relation defined over the ele-
ment type, a tree-based representation can be used for sets; if the elements are
generated in a particular order, a list-based representation might be best. In
some cases, more than one representation might be used so that the user-level
operations can be most effectively performed.

In a language like Ada, it is possible to have multiple implementations of a
type. This is made possible by the package structure, but it requires each type to
be named in a different way. An extensive set of data type definitions is given by
Booch [11]. The types are distinguished by their different implementations and
each is given a different name in order to denote properly what the type does
and how it operates. A similar approach is, of course, possible in languages like
CLOS, Dylan, Smalltalk, Eiffel, Java and C++. The major problem with this
approach is that it requires new names to be thought up each time. Names are
only arbitrary labels, but the problem runs deeper because types are referred
to in program text by their names. If we want to alter the implementation of a
type, we must, under this scheme, redeclare all relevant variables so that they
are of the new, not the old, implementation–the basic or underlying type is the
same.

In languages making distinctions between private and public slots and meth-
ods, like C++ and Java, it is possible to hide the implementation of a type by
making all implementation details private. Using the private slots and methods
as a basis, public methods, typically, can be defined which provide the interface
that is desired for the type. Using this approach then, implementation can be
hidden completely from the user, while the interface is totally visible. This is
one approach to the separation of interface and implementation, but it is not
particularly attractive because the two must co-exist in the same class defin-
ition, whereas a full separation will consist of an inheritable definition of the
interface and a completely separate implementation.

7.2 Types and Implementations 189

Figure 7.1 Abstract classes and multiple implementations.

In languages that permit the definition of abstract classes, implementations
can be separated from their interface in the following way. An abstract class
is defined which provides the desired interface. The methods and, perhaps,
data slots of the abstract class define the interface that is to be presented.
The implementation of this class can be provided by one or more concrete
subclasses. The subclasses can employ the public/private distinction described
in the last paragraph, if desired. Using abstract classes, the interface can be
independently inherited along a chain of subclasses. These subclasses can all
be abstract, thus defining a sequence of progressively more detailed interfaces.
In parallel with these interfaces, concrete classes can be defined to provide
various implementations of the interfaces that are defined at various levels in
the inheritance structure. This is one clear and effective method for separating
implementation from interface. This approach partially solves the problem, but
it still introduces a number of separate types, each with different names, so they
are considered to be distinct but related types. The fact that they are derived
from a single root class allows polymorphism to assist in the construction of
the final product. The use of abstract classes is shown in Figure 7.1.

The figure shows how there is a central “trunk” and various “branches”
emanating from the trunk. The trunk represents the simple inheritance chain
produced by successive specialisations of the original abstract class. The origi-
nal abstract class defines the interface. The branches represent concrete classes
which implement each successive interface (abstract class).

190 7. Types II: Types and Objects–Alternatives

On a much more speculative note, the separation of implementation from
interface and, in particular, the provision of different implementations opens the
way to the runtime selection of implementation. This becomes possible when a
language or system is equipped with reflective properties (see Chapter 8). Such
properties allow it to examine its own state and to make decisions about such
matters as the choice of which implementation to adopt at any given point in
the execution of the program. For example, if there is little space or time, a list
might be represented by a vector. If the list becomes too long for the vector,
the program might decide to adopt a heap-based implementation based upon
small, simple cells and convert the existing data structure into the new one.
To do this, it is not necessary to have all code in compiled form at the same
time, for the program might employ dynamically linked libraries or dynamic
compilation.

We now turn our attention to a matter related to implementation and in-
terface, but of a different nature.

7.3 Hiding Implementation Details

The focus of attention in this section is on classes whose sole use is the imple-
mentation of a more “important” class. These implementing classes make no
sense outside of the definition of the class which they help define and should,
ideally, be made inaccessible to all but the implementer of the more “impor-
tant” class.

Even with a separation of interface from implementation, it is not always
desirable for all classes or types to be visible to all other components. Sometimes
it is desirable to hide a class or type from potential users. This is possible in Ada
by means of the package mechanism; hidden types are defined as being private
to the module; it is also possible in Java where a class can be made private to a
package. Dylan also provides the same functionality, as does CLOS. C++ and
Smalltalk fail to provide any such mechanism; in these languages, all classes are
public and can be instantiated anywhere (the namespace construct in the new
version of C++ is an attempt to address this problem). Most of the languages
just cited restrict class visibility using an additional language construct. Eiffel
does not have modules in the language; implementations of the language often
include a directory concept called a cluster which permits selective export of
classes–this is, though, an extra-linguistic mechanism and can be omitted. If a
language permits the nested definition of classes, private types can be handled
by internal definition; this, however, severely restricts access to the internal
class (unless mechanisms similar to those in Beta are provided). However, the

7.3 Hiding Implementation Details 191

problems with nested class definitions are, among others, that the nested class
has direct access to the implementation of the class in which it is defined and
that the contained class can only be instantiated when the container is. These
arguments suggest that nested classes are not to be preferred.

One simple case where type visibility matters is in the definition of a list
type (trees of various degrees are also simple examples). What we would ideally
prefer is an interface that represents a list of some type (we assume a class
definition mechanism that supports parametric polymorphism). In order to
support that definition, we need a class to represent the cells that form the
list. Taking the simplest case, a cell will be composed of a head containing
the data value and a tail containing a reference to the next cell (or nil or
some other distinguished value denoting termination–NONE and NOTHING
are two names found in the literature). It is very rarely the case that the user
wants the cell type to be visible. What is required is often something like the
following:

– the ability to test for the empty list;

– add a new value to the list;

– obtain the value in the head;

– obtain the list represented by the tail;

– search for a value in the list;

– append two lists;

– apply a function or procedure to each value in the list (either updating or
producing a copy);

– copy the list;

– return the number of cells in the list (the length);

– reverse the list.

Sometimes, destructive operations are defined for lists; these operations alter
the list structure by manipulation of pointers and by setting values directly
into the head slots in cells.

Despite the remarks about destructive operations, none of the above op-
erations is described in terms of the cells that are used to represent the list.
Instead, the higher-level concept of the list is employed. To avoid belabouring
the point, the interface to the list class is defined entirely in terms of opera-
tions on the list, not on operations involving the underlying cell type. The cell
type is used only for implementation and not for specification. An iterator for
lists can be written in one of two basic ways: in terms of list operations, or in

192 7. Types II: Types and Objects–Alternatives

terms of the underlying representation. The former implementation maintains
the abstraction and is to be preferred.

(If we wanted to define a list type suitable for use in LISP, we would have
to define a dotted pair type and then base the list type upon it; the dotted pair
is a legal, if a little uncommon, type in LISP. We would need to expose the
dotted pair type even though we would still define the list interface much as
above. We would also need operations to access the underlying representation.
Such operations could be provided by the list type (via what amounts to a type
change) or simply by viewing the list as dotted pairs.)

Types that are introduced simply to make the implementation of a type or
class possible should not be made visible to everyone. In the older edition of
C++ or in Eiffel without clusters, this is often necessary; in other languages,
module mechanisms help restrict visibility. The cell type, in the case of the list
type, should not be visible to other components for it is only used to implement
the list type. However, it is necessary to define the cell type and to implement
it somewhere; the place where it is defined must be accessible to the place
where the list type is defined and to nowhere else. If it were globally visible,
as in Smalltalk, the older edition of C++, and Eiffel without clusters, it would
be possible to see how the list type was constructed. This would violate the
principle of encapsulation. Given access to the underlying representation, there
is the temptation to provide “back door” methods for accessing the internal
structure of a type (here, the cells of a list), so that they can be manipulated by
“more efficient” methods–experience shows that they are seldom more efficient
or more effective, leading, as they do, to more errors and less abstract code
(more messy detail, in other words).

It might be thought that the definition of a class within another class would
be an adequate solution to the problem of implementation class visibility. It is,
however, a poor solution. One reason for this is that it makes the sharing of such
internal classes impossible. We have said that the intention is to prohibit access
to the types used to implement other types, the other types being required to
be visible. Immediately one thinks that such an implementation type would
be used in the definition of only one other class. It can be argued that it is
never the case that two classes will ever require access to each other’s internal
representations. However, there might be cases where this is needed even if
it is not advisable. When this occurs, the type used for the implementation
must still be hidden from all but those special classes which require access. We
therefore have the dual requirements of hiding the implementation class while
making it accessible to a select few. This, again, suggests that some type-hiding
mechanism akin to modules is required. Such sharing is necessary, for example,
when different views are required of the same data structure.

7.3 Hiding Implementation Details 193

In C++, it is possible to define a friend class or routine. If one class, F , is
marked as a friend of another class, C, instances of C can directly access in-
stances of F ; this provides classes with a way of inspecting and updating private
and protected data and methods. The friend concept is clearly a mechanism for
removing visibility barriers and for avoiding encapsulation. It is the “standard”
way to construct a list class in that language [74, 48]. The “approved” method
for defining a list in C++, at least in those works cited, is to define a class to
represent the cell type which is a friend of the list class. The friend mechanism
affords the list class access to the internal representation of the cell class in
order to update head and tail values (the operation of adding a new cell to the
front of a list—consing in LISP terms–is defined as destructive assignment to
the tail slot of the cell). The problem is that the list class needs to operate upon
component cells; the direct fashion introduced by friend classes is, presumably,
for more “efficient” access, but this clearly costs more than it earns, for every
class can be marked as a friend and anarchy will once again reign!

A cleaner approach is to define an abstract cell class to be used by the list
class and then to specialise the cell type; this requires access to the cell class
(or its interface) and we are still exposing details that should be hidden. What
we want is for the interface to represent the list type and for all implementation
details to be hidden from view. We return again to the idea that either class
nesting must be permitted or that a module concept be added.

In more recent versions of C++, the namespace concept has been intro-
duced, thus solving the above problems. Dylan, Java, Ada and CLOS all pro-
vide module-like constructs which have visibility restriction operations. The
Theta language [46] also has a module construct and adopts an interesting
approach to objects and classes.

In Theta, classes are used to represent user-defined types. They use inher-
itance in their definition, just like classes do in C++ and other class-based
languages. Theta treats its classes as types and a subtype relation is implied
by the inheritance relation. Instances of a Theta class represent values of a
type. Consequently, variables can be declared to be of a user-defined type and
can be assigned to instances of that type. Theta does not, at least according
to [46], allow classes to be defined on their own. Instead, Theta differs from
the other module-supporting languages in the requirement that classes must
be defined inside module-like constructs which are used to control visibility.
Theta classes (types) can have multiple implementations. Theta uses modules
to contain implementations.

194 7. Types II: Types and Objects–Alternatives

7.4 Classes and Type Operations

Classes are commonly equated with types. An instance of a class is a value in
a type. There are clear generator functions and relationships between classes
that reinforce this view. When we want a value, we instantiate the class as
appropriate; instantiation can specify parameter values for complex types so we
can distinguish values of a type. In many class-based languages, we are severely
restricted in the range of operations that can be employed in the definition of
new classes (types). Typically, a new class is defined by specialisation of an
existing one; some languages allow the definition of a root class for a new
subtree (C++ allows this, for example, for it has no fundamental root class,
unlike Java, Eiffel and Dylan), thus defining a whole new family of classes.
Container classes can be used to construct more complex types: vectors, lists,
trees, maps (tables), and so on.

If classes are types, then much of object-oriented programming is concerned
with the definition of new types (frequently, this amounts to implementations).
Types are included in other types. A program consists of instances of the types
it defines. Types must be instantiated and used by some kind of structure. In
some languages (Ada, Dylan, CLOS, for example), instances can be created
and manipulated inside modules. In these languages, the operations which act
upon instances and which are not part of the class definition mechanism can be
grouped independently of classes. This is true of C++, but it lacks a module
construct, so there are potential visibility problems (which are usually solved,
in none too principled a fashion, by manipulation of external and static

declarations and grouping of routines in files).
In a language like Java, a pure object-oriented language (“pure” in the sense

that it is only possible to define classes and instances; routines must be defined
inside classes and types are exclusively identified with classes), it is not possible
to write a collection of routines that perform a set of operations without in-
cluding them in a class. There is often a tendency to equate classes with some
form of grouping or modularising construct employed solely to keep related
routines together. For example, the main loop of a programming language in-
terpreter might be implemented as a class for this reason; a class presents a
well-defined interface, as should a module. The tendency to define modules as
objects adds more confusion as to the role of the class construct. One reason
for this is that modules are very often only instantiated once, while a type has
many instantiations. In Java, as in Eiffel or Smalltalk or Sather, the main loop
of an interpreter must be written as a method in a class and this fact makes it
sensible to put into that class the routines that directly support that loop. Such
a class would, of course, instantiate types such as a type representing the run-
time stack and some kind of variable storage (assuming a procedural language),

7.4 Classes and Type Operations 195

as well as tables holding the code to implement language primitives and library
routines. Indeed, in a pure language, this code must be represented in terms of
instances of classes. If one wants a primitive to write a value to the screen, it
can either be implemented in the main loop as a method call or as a primitive
in a table (the latter is preferable for it reduces the size of a typically over-long
loop); yet, in a pure language, that primitive routine must be implemented as a
class whose single instance is stored in the primitive table. This technique cer-
tainly enforces a well-defined and universal interface for primitives: in the class
defining the primitive, there will be a main method that performs the action of
the primitive, and this main method will have a name and signature defined in
the abstract class representing all primitive operations. The representation is
based upon an abstract class that defines the interface presented by the classes
implementing primitive operations. If the interface requires a little adjustment
to accommodate an additional argument, all primitives must have that same
interface; this can be wasteful as well as confusing; we have bought regularity
at a non-negligible cost.

What we see here is another example of the use of objects as collectors of
routines as well as types. This represents a confusion as to what a class is and
what its purpose should be. Unless we are able to talk with some degree of
sense about what a collection of routines is in terms of the type that such a
collection represents, we had better seek an alternative construction or find the
appropriate theoretical backing.

We can consider a class to define a product of types (of classes). This product
defines its signature. Specialisation extends the product with new components.
Restrictions can be placed upon the visibility of components of the product,
some can be public, others private, and so on. When there is a branch in the
inheritance structure, we can equate it with a disjoint sum over the types; in
programming terms, a union of the subtypes is defined by the branch and the
join (root) of the sub-tree represents the union of its subtypes. Finally, methods
can be defined which accept objects of one type (class) and return objects of
another type (class). The information in the input object is used in the creation
or modification of the object that is returned. This provides us with an arrow,
or function, operation over objects (it is very common in C++ to see this kind
of construct). It should be noted that product and sum can be considered static
operations; they apply to classes and not to instances, while arrow applies only
to instances (to objects). In a class-based language, it is not in general possible
to define a function over classes; what we have is a function over instances of a
class (or values of a type). This might be seen to be totally correct for classes
are usually defined prior to runtime and represent the static structure against
which instantiation provides a dynamic collection of objects that represent the
changing state of the program; classes provide a framework, in other words.

196 7. Types II: Types and Objects–Alternatives

The reason for introducing products, sums and arrows is that they are the
standard mechanisms for defining types mathematically. Certainly, there are
other operations such as restriction and complementation that are available
mathematically to appropriate structures. What we have in most class-based
languages is a much more restricted collection of operations, two of which
are conflated under the general name of “specialisation” or “sub–classing”.
However, given one class, it is not, in general, possible to map it to another class.
This is the case even in languages providing meta classes. Interestingly, such
operations are possible in more recent versions of ML which support structures
and functors [36, 37].

The argument against arrows is that they require the structure of classes
to be present at runtime. This might represent a prohibitive overhead in some
cases, for example where the program is very large or when speed is of the
essence. In compiled languages, there is the tradition of removing all extrane-
ous information; indeed, the concept of compilation is often expressed as being
the mapping between a surface (textual) form and a form which is more read-
ily executed by the hardware. The compilation process completes before the
program is executed; the result of the compilation process is a complete pro-
gram that is ready to run (clearly, this concept also subsumes that of linking
to necessary libraries). Under these circumstances, the idea of maintaining the
classes that are required by a program is strange.

No matter what the status of arrow types in a particular language, it is
important to see that a class-based language is based, inter alia, upon the
concept of instantiation. There is a fundamental distinction between a class
and an instance of a class. When viewed as types, instances of classes represent
values. As values, they can be passed around from method to method; they
are first-class entities. With the use of container classes such as lists, sets,
maps, bags and vectors, collections of instances can be manipulated; this is
what makes complex data structuring manageable (we could manage just with
integers, but it would be too painful). It is very rare that a method or routine
is considered to be an instance of some object. A collection of methods or
routines, together with supporting types, is something that does not appear
to have a basis in the interpretation of classes as types. One reason for this
is that it can be instantiated, but there seems little point. A second reason is
that when asked “what type does it represent?” the answer might not be easy
to produce.

There might be circumstances under which it does make sense to instantiate
something that looks like a collection of routines, for example if simulating
parallel processing, one defines a class to represent the interpreter of a language
and then instantiates it for each processor in the simulation. Here, we have a
distinct concept that is being modelled by the interpreter class; it is a model

7.5 Containers and Objects 197

of a processor. However, if we consider a module from an operating system,
say a storage allocation module, it consists of some types (for instance, a type
representing virtual store) and operations upon those types. The operations
are more complex than those defined for each component type in the sense
that they might relate various types, perform composite operations involving
operators from many types, perform format conversion and so on. There is
a central purpose to the module’s operations but they do not define a type,
necessarily. We might want to instantiate a storage allocator in various ways,
but we would probably not say that a storage allocator is a type.

Some might point out that modules in a language like Modula-2 [81] are very
similar to classes in C++, etc. What makes them similar is that they collect
related objects and routines and provide a standard interface, just as a C++ or
Eiffel class does. Modules cannot, in general, be instantiated or parameterised;
they are created by definition, not by calling a constructor. Some languages with
module constructs allow initialisation code, Ada packages being one example,
but it tends to be relatively inflexible in form and nature. Modules in languages
like Modula-2 and Ada cannot be treated like types, unlike a Smalltalk class.

In languages like Modula-2 and Ada, modules can be defined and used.
They cannot be refined or specialised; consequently, it is impossible to form
alternatives in a space of modules. This contrasts strongly with classes where,
as noted above, branches can be used to represent sum types. Modules are also
rarely associated with polymorphism and do not naturally support it, while, as
we have seen many times, polymorphism is at the heart of the conception of
object-oriented languages. Modules serve as encapsulating devices only. Mod-
ules do not naturally support the three properties we said were essential to
object-oriented programming: inheritance, encapsulation and polymorphism.

7.5 Containers and Objects

Objects are often called upon to act as containers for arbitrary routines and
types. This amounts to the use of some kind of module. These arbitrary collec-
tions are often instantiated only once; the main loop of an interpreter or the
primitives that such an interpreter would use are good examples of this. Such a
use of a class is very close to that of a module. Modules, as noted above, cannot
be instantiated and only one actual copy exists in a program at any time. It is
a central property of modules and of the classes forming arbitrary collections
that they are instantiated once (or only a very few times). This is, however, a
property that can be expressed easily in an object-oriented language.

198 7. Types II: Types and Objects–Alternatives

We have already seen that a module-like construct is of some utility in
restricting the visibility of types. Here, we see another use for modules: the
collection of routines and types into separate building blocks. This is relatively
conventional in its rationale; many languages have been proposed which employ
modules, Modula-2, Ada, CLOS and Oberon [56] are well known. What I am
suggesting is not even new, for Ada, Dylan, CLOS, Eulisp [55] and Oberon are
either class-based languages or contain a class-based sub-language. In each of
these cases, classes can be defined and their visibility restricted. By means of
import directives, types can be used that are derived in other modules and thus
form the basis of types that are defined within a module.

It can be objected that modules are inflexible. They can only be instanti-
ated once and they can be composed only by declaration and by import and
export lists; modules are not first-class objects unlike instances. Bracha [15, 16]
has proposed a module operation formalism for the manipulation of modules.
Bracha defines a module as anything with an interface; that interface specifies
a set of services. Modules in their conventional sense are primarily intended to
collect elements and provide them with a well-defined interface. The idea of op-
erating on modules is not a new one, as Taivalsaari [76, 77] notes (for example,
see [33] or [38]). Taivalsaari employs module operations, as noted in Chapter 3,
as the basis for the Kevo prototype-based language. Here, we suggest them as a
way of making modules more flexible in a class-based language that interprets
types as classes. If we adopt the module operations proposal, we can construct
modules by means of various forms of combination as in a language like Kevo.
If a copy or cloning operation is included in the set of operations, we have the
concept of an instantiable, perhaps parameterised module construct. These are
proposals for research, so I will say no more here.

EXERCISES

7.1. When reference and immediate values are included in the same pro-
gramming language, how does their inclusion affect the domain of
representable values? Does this represent a complication or does it
bring benefits?

7.2. Describe the usual method for assigning instances. Pay particular at-
tention to non-heap instances (i.e., in C++, this would be instances
that are created on the stack, not in the heap). Inheritance is clearly
of importance in assignments, so your description must include a way
of including it.

7.5 Containers and Objects 199

7.3. Outline an implementation of parametric polymorphism. Identify
the main problems. Does the implementation have any space or time
problems?

7.4. C++ has the concept of a “friend” class. Explain what a “friend”
class is and what need it satisfied in the language’s design. In general,
are “friend” classes such a good idea?

7.5. Some languages like Java and C++ permit the definition of nested
classes. What are the advantages and disadvantages of this? Consider
the case of a nested class that is declared public; should it be possible
to return values of this type?

7.6. How does the ability to define nested classes affect the semantics of
C++?

7.7. How do the visibility annotations, public, protected and private,
interact with the definition of nested classes? Do the interactions
lead to ad hoc restrictions on nested class definitions?

8
C#

8.1 Introduction

In the summer of 2000, Microsoft announced its .NET platform and a new
programming language called C#. The .NET platform is based on a Common
Language Runtime similar to the Java Virtual Machine and on a set of libraries
that can be used by a variety of languages that are able to inter-operate by
compiling into an intermediate language called IL.

This chapter is concerned with the C# language only. Matters such as the
scope and organisation of the .NET framework and on the Common Language
Runtime fall outside the scope of this book, so they are not described. The
Common Base Library defined for C# programs (a large collection of classes
similar to the Java class library) is mentioned briefly at the end of the chapter.

This chapter, then, concentrates on the C# language. It contains an ex-
position of the main structures of the language. Because C# is a relative of
both Java and C++, it is natural to compare the three. Such a comparison is
conducted throughout the chapter.

The chapters organisation is modelled on the first few chapters of this book.
Classes and instances are considered first. Inheritance is the next subject to be
examined. Methods and operators come third in the list, followed by polymor-
phism. Finally, the Base Class Library is outlined.

The C# conceptions of class and instances, as well as inheritance, are rela-
tively standard. Methods are somewhat more interesting because of the intro-
duction of so-called properties and delegates. The type system is quite close,

202 8. C#

at the class level, to that of Java but includes an interesting and extremely
powerful type unification that is a consequence of the introduction of value
types that are also used to represent all primitive types.

The current chapter does not cover issues such as events and the various
forms of namespace that can be employed by C# programs. The reason for this
is, again, that these issues are not directly related to the concepts that define
the semantics of the language.

8.2 Classes and Instances

C# is a class-based language, like C++ and Java. Classes act as templates
for the creation of instances. Like the other two languages, C# treats a class
semantically as the definition of a new type. Variables are declared as having a
type that can be the name of a class (there are also primitive types that are not
classes). C# classes are defined as a unit, unlike C++ classes. In C++, a class
is typically defined in a header file. The header contains the definition of the
interface and an accompanying file contains the implementation. C# follows
Java in avoiding this.

Classes are defined in a single unit, with the implementation of its methods
included in that unit. The data slots of the class (the data members in C#
terms) are also declared in a manner similar to Java. C# avoids the header
concept completely.

C# like both C++ and Java permits the definition of nested or inner classes.
The scope of an inner class is restricted to the class in which it is defined.

A simple example of a C# class is the following:

class ExampleClass {

int x = 0;

int DoubleX 0

{

x++;

return x;

} // end method

class Inner {

int y;

void printY ()

{

Console.WriteLine (x+y);

} // end method

} // end inner class

8.2 Classes and Instances 203

} // end class - - note no semicolon

The class contains three kinds of entity. A data member (data slot). At the
outer level, x is declared as an integer and initialised to the value zero. Next,
a function member (a method) is defined. The method DoubleX doubles the
value of x and returns that doubled value as its result; it also updates x in the
instance of the class whose DoubleX method was called. Finally, there is the
definition of an inner class, which represents a type member.

The inner class has its own local data member (y) and a method-classes do
not define their own local types if there is no requirement. The method printY

prints the value of the sum of its local data member (y) with the value of x.
Inside a nested class, the members (slots) of its enclosing class are visible. The
visibility rule is always outwards, so the following:

class ExampleClass {

int x;

int sumXY ()

{

return x + y

} // end method

class Inner {

int y;

. . .

} // end inner class

} // end ExampleClass

is not legal C#. The reason for this is that y is not visible outside of its defining
class. In the SumXY method, only x is visible; y is not visible.

8.2.1 Class and Instance Variables

C# follows C++ and Java in making a distinction between class and instance
variables (members). If a member of a C# class is marked as static, it is
shared between all instances of the class. Thus,

class ExampleClass {

static int x = 0;

int incX ()

{

x++;

}

. . .

} // end class

204 8. C#

Data member x is declared as static and there will only be one instance of it
created at runtime. The incX method increments the value of x. If there are
three instances of this class, each time an instance calls incX, the same variable
will be incremented. Methods can also be annotated as static with the same
effect. Type members cannot be so annotated for the reason that they cannot,
logically, be shared, since they are private to the class in which they are defined.

8.2.2 Access Levels

Classes and their type members can be annotated in order to declare their level
of accessibility. The following access modifiers are defined in C#:

– public;

– protected;

– private;

– internal;

– protected internal.

The first three have a similar interpretation to the corresponding Java or C++
concepts. The remaining modifiers are particular to C# and are discussed below
when considering namespaces. Like Java, but unlike C++, data and function
members are individually annotated, while C++ divides the class definition
into sections.

Classes can be marked as sealed. This annotation has the same interpre-
tation as Java’s final. That is, it is not possible to derive subclasses from a
sealed class.

There is a constraint on type access modification. A type or type member
must not be declared to be more accessible than any of the types it uses in its
declaration. Moreover, modifiers cannot be used when they conflict with the
purpose of inheritance modifiers.

8.2.3 Data and Method Access Modifiers

Data and function members of a C# class can be annotated with an access mod-
ifier. Furthermore, a data member can be marked as either const or readonly.
Thus, a data member can be declared as:

const int x = 0;

8.2 Classes and Instances 205

The expression on the right of the assignment symbol must be such that it
can be completely evaluated at compile time; const denotes a compile-time
constant. On the other hand, a data member declared as readonly, such as:

readonly int x = e;

is evaluated at runtime. This implies that the expression appearing on the
right-hand side of a readonly declaration can contain references to variables
and to methods.

8.2.4 Instance Creation

Class instances in C# are constructed in a way that will be familiar to Java
programmers. It is also similar to the constructor for heap-allocated instances
in C++. The general form is:

variable = new classname (optional parameters);

The new operator calls the appropriate constructor defined in the class named
classname. The appropriate constructor is the one that has a signature that
corresponds to the optional parameters. The appropriate constructor is the
one that defines the same number of parameters as appear in the call and, for
each parameter, the type of the actual parameter corresponds (modulo the C#
well-typing rules) to the type of the formal parameter. This definition has to
be slightly relaxed because a constructor might have a params parameter (see
Section 8.4.3, below), so the number of actual parameters can be greater than
that of the constructor.

A constructor is defined in a way similar to Java or C++. It is a function
member whose name is the same as the class in which it is defined. Thus, for
class ExampleClass, the constructor will be named ExampleClass. Construc-
tors can be overloaded, so different signatures can be employed. For example:

class ExampleClass {

private int x = 0;

private float f = 0.0;

private string s = null;

public ExampleClass ()

{

// null body

} // end constructor

public ExampleClass (int xv)

{

x = xv;

206 8. C#

} // end constructor

public ExampleClass (float fv)

{

f = fv;

} // end constructor

public ExampleClass (string sv)

{

s = sv;

} // end constructor

} // end class

The first constructor has no parameters. It leaves the values of the data mem-
bers unchanged. The second constructor takes an integer argument and sets x.
Similarly, the other two constructors modify only one of the data members. All
of the above constructors are public; other access modifiers are legal.

To create an instance of ExampleClass, one of the following statements can
be used, depending upon which data members (if any) are to be set to a value
other than the default:

ec = new ExampleClass();

ec = new ExampleClass(2);

ec = new ExampleClass(2.14159);

ec = new ExampleClass(new string);

(It is assumed that ec is a variable of type ExampleClass.)
A class may call one of its overloaded constructors before executing the body

of its method using the this keyword, as is shown in the following example:

class ExampleClass {

private int x;

public ExampleClass () : this (99) { . . . }

public ExampleClass (int y)

{

x = y

} // end constructor

} // end class

Assume the following call:

ExampleClass ec = new ExampleClass ();

The instance, ec, that is created will have its x member set to the value 99.
The reason for this is that its parameterless constructor calls the overloaded
constructor with an integer argument prior to executing its own body. The call
to the constructor with an integer argument is given the value 99, which is

8.2 Classes and Instances 207

then passed to the body of that constructor. The body sets x to the value of
its argument.

If a constructor is not defined, the C# language states that a parameterless
constructor will be automatically created.

8.2.5 Static Constructors

C# allows constructors to be marked as static. This allows initialisation code
to be executed before the first instance of the class is created. At the same time,
it allows initialisation code to be executed before any static member of the class
is accessed. A class can have only one static constructor. Static constructors
must have no parameters and must have the same name as the class in which
they are defined.

8.2.6 Finalization and Destruction

In C#, as in Java, all instances are created in the heap. C# provides a garbage
collector to manage the heap. C# defines a destructor member function. Java
defines a finalization operation but the finalize method is rarely used in Java
classes. C#’s destructor is syntactically similar to the C++ destructor but its
semantics are completely different.

In C#, the destructor for class classname has the following syntax:

optional attributes classname() body

It is a method with the same name as the class in which it is defined; that
name has a mandatory tilde (˜) prefix. Destructors take no arguments.

Destructors are just a syntactic mechanism for declaring a Finalize method
(called a finalizer). A destructor is expanded by the compiler into the following:

protected override void Finalize ()

{

// user-supplied code

base.Finalize ();

} // end method

The code provided by the programmer in their destructor method body is
inserted into the Finalize method. The last line calls the finalizer defined in
the class’s superclass (the base keyword will be explained below in Section
8.4.2 when considering inheritance).

Finalization code is typically called by the garbage collector to provide class-
specific clean-up operations. Rather than rely upon the compiler to generate

208 8. C#

an appropriate finalizer, it is best explicitly to define a Finalize method. This is
also a good idea because the finalizer semantics of C# differs so radically from
the destructor semantics in C++, the crucial difference being the interaction
with the garbage collector. In C++, destructors actually manipulate memory
and perform deallocation; in C# they do things like tidy the instance before
deallocation by the storage manager. This is a big difference.

It only makes sense for there to be one finalization method for each class,
where such a method is defined.

8.2.7 Dot Notation and Member Access

The last code example shows the use of the dot (“.”) to refer to members of
a class. This is the same as in Java and is the same as the syntax for stack-
allocated C++ instances. C++ uses the symbol -> to denote access to visible
members of a heap-allocated class.

8.2.8 Abstract Classes

It is possible to define abstract classes in C#. An abstract class can contain
abstract methods. When declaring an abstract class, the keyword abstract is
employed. It is also employed to declare a method abstract.

Abstract methods have no implementation and they are implicitly declared
virtual (for more discussion of virtual methods, see Section 8.4 on methods,
below). An example of an abstract class is:

public abstract class ExampleClass {

public abstract foo ();

} // end class

This is an abstract class because it is marked with abstract, just as it
would be in Java. The method foo is abstract and has no implementation (it
has no body, only a signature).

As in other languages, C# abstract classes cannot be directly instantiated.

8.2.9 Indexers

The concept of an indexer is novel in C#. It is not a concept of either C++ or
Java. An indexer provides a way to index elements in a class that encapsulates a
collection. Indexers use array syntax (square brackets). The following example

8.2 Classes and Instances 209

comes from [5] (p. 42):

public class ScoreList {

int[] scores = new intE5];

// indexer:

public int this [int index]

{

get {

return scores [index];

}

set {

if (value >= 0 && value < 100)

scores [index] = value;

}

} // end indexer

public int Average 0

{

int sum = 0;

foreach (int score in scores) sum += score;

return sum / scores.length;

} // end Average

} // end class

The class can be used as follows:

public class IndexerTest {

static void Main ()

{

ScoreList sl = new ScoreList ();

sl[O] = 9;

sl[l] = 8;

sl[2] = 7;

slE3] = sl[4] = sl[l];

System.Console .WriteLine(sl Average ());

} // end main

} // end class

In this example, the collection is an array of int. The collection could be a
hash table, an array list, a bit array, a queue, a stack, a sorted list or a string
collection. The collection could involve the implementation of an interface. The
indexer is declared with identifier this and arguments inside array-reference
brackets. The internals of the indexer resemble properties (see below, Section
8.4.4): there is a setter and a getter routine. The setter is used to set the value
of elements of the collection, while the getter is needed to retrieve values.

210 8. C#

Inside the indexer and the Average method, the scores array is treated just
as a local array. However, in the IndexerTest class, the use of the indexer
can be seen. Here, it is composed of the name of the instance (sl) and array
brackets around indices. In effect, the sl[x] notation is giving controlled access
to the scores data member, which is private to class ScoreList and should,
therefore, be invisible to Main.

8.2.10 Self Reference

The non-static members of a C# class may refer to the instance in which they
appear using the this keyword. The use of this is identical to that in Java
and C++. The this pseudo-variable can also be used in constructors (as seen
above) or to declare or access indexers. The most common use for this is to
disambiguate variables, for example:

class ExampleClass {

string name;

public ExampleClass (string name)

{

this.name = name

} // end constructor

} // end class

The qualification this.name on the left-hand side of the assignment in the
constructor makes it refer to the name that is declared as a data member in
the class. On the right-hand side, the unqualified name refers to the parameter
to the constructor. This is a common idiom in Java and in C++.

8.3 Inheritance

C#, like Java, is a language based on single inheritance. It achieves the effect
of multiple inheritance by means of multiple interface inclusion, a feature it
shares with Java. The complexities of C++ multiple inheritance are avoided
and a considerably simpler semantics results.

When one class, A say, is derived by inheritance from its super class (its
“base” class, in C# terms), the declaration of A is written:

class A : B {

. . .

} // end class A

8.3 Inheritance 211

This syntax is similar to that employed in C++. Unlike Java, there is no key-
word denoting inheritance (Java uses extends). After the colon, there can be
exactly one classname, the name of the base class (superclass) from which this
one is inheriting.

The C# class system has a root class, called object. If a class is defined
without a superclass (as have all examples in this chapter so far), class object
is assumed to be its parent. The existence of a single root class has been dis-
cussed elsewhere (Section 6.6), and will be mentioned again when considering
polymorphism.

The rules for converting between class types in C# are the familiar ones.
If class A is derived from class B, A may be implicitly upcast to B, and B may
be explicitly downcast to A. C# adds an operator called as that returns null

if the downcast fails. The language also defines an operator, is, that performs
type tests.

8.3.1 Calling Base-Class Constructors

When a constructor of a derived class is called, it must call its base class
constructor. If the base class constructor has no parameters, this is performed
implicitly by the C# compiler. If the base class constructor takes one or more
parameters, there must be an explicitly programmed call on that constructor
so that the appropriate arguments can be passed.

The basic form of a call to a base class constructor in C# is identical to
that in C++. It consists of the constructor’s header (name and parameters)
followed by a colon, followed by the keyword base and the required arguments
inside parentheses. For example, assuming that MyClass has a constructor that
expects an integer argument, the following is a legal constructor:

class ExampleClass : MyClass {

public ExampleClass (int x, int y) : base(x)

{

// body of constructor

} // end constructor

} // end class

If a class has a parameterless constructor that calls an overloaded constructor,
the following is a legal declaration of a call to a base class constructor:

class ExampleClass : MyClass {

public ExampleClass () : this(99) {}

public ExampleClass (int x) : base(x)

{

212 8. C#

// body of constructor

} // end constructor

} // end class

Again, it is assumed that the base class has a constructor that expects an inte-
ger argument. The first constructor expects no arguments but it calls one that
takes an integer parameter, which is called before the body of the zeroadic con-
structor. The unary constructor, when called, will call the base class (MyClass)
in order to ensure base-class (superclass) initialisation.

The order in which classes are constructed and finalized is as standard.
Constructors are called in a way that respects the inheritance chain in C#.
Therefore, the order is least to most specific. The constructor for object is
therefore always called first and the constructor of the most specific class is
called last. Thus, if a constructor in class MyClass is called, the constructor for
object is first called, then, in descending order, all the constructors for the in-
termediate classes until the constructor for MyClass is reached. The constructor
for Myclass is called last. The same rule is followed by static constructors.

The finalization rule works in the reverse order to the constructor rule. That
is, it works by finalizing the most specific class and works up that class inher-
itance chain until it reaches object. This means that local slots are finalized
before inherited ones. It should be remembered that finalization depends upon
the garbage collector, so the exact time at which finalization occurs cannot be
predicted. That is, there is some non-determinism in the operation of the stor-
age manager, so C# software should not make any assumptions about when
finalization code will be run.

Initialisations of data are always performed by C# before the constructor
for the class in which they appear is called. This makes all locally declared slots
(data members) available to the constructor. Data members that are marked
as static (class variables, in other words) are initialised before any static

constructors are called.
It is worth noting that, in C#, it is not possible to determine exactly when

a static constructor is to be called. For this reason, code should not be written
that relies upon a particular ordering of calls to these constructors. The order
in which static constructors are called is non-deterministic in C#.

Classes in C#, as in Java, rely upon interfaces to provide multiple inher-
itance. C++ uses multiple inheritance and a fairly complicated system of su-
perclass annotations to control what is inherited and how.

8.3 Inheritance 213

8.3.2 Interfaces

Interfaces are common to C# and to Java. Like Java interfaces, C# interfaces
are akin to classes but only provides a specification not an implementation. As
such, an interface is closely related to a purely abstract class (an abstract class
that contains no implementations). Classes in C# can implement more than
one interface but can inherit from only one class–this is identical to the rule in
Java.

An interface consists of one or more method specifications, properties and
indexers (and events, although the latter are not considered because they are
implemented in the library). All the members of an interface are implicitly
public and implicitly abstract; they are, therefore, virtual and non-static.

The syntax for using an interface is similar to that employed in Java. An
example of this is:

public class C : Interface1, Interface2 . . .

{

// Body of class C

} // end class C

Class C implements Interface1, Interface2, etc.
If a class inherits from a superclass (base class in C# terms), the superclass

name must appear before any interface names. Thus:

public class C : Superclass, Interface1, Interface2

{

// Body of C

} // end class C

Here, class C inherits from superclass Superclass and implements interfaces
Interface1 and Interface2.

Interfaces can extend other interfaces in Java (after version 1.2) and in C#.
For instance:

interface I2 {

int Bar (. . .)

} // end interface

interface I1 : I2 {

bool Foo (. . .)

} // end interface

This is an interface called I1 that extends the interface I2. The combined
interface specifies two methods: Foo and Bar, one method is inherited from
each parent.

214 8. C#

If there is a name clash between two interfaces, whether produced by in-
terface extension or by interface inclusion in a class header, or because of the
presence of a class member with the same name, C# allows the programmer
to implement explicitly an interface member to resolve the conflict. Consider
the following case:

public interface I1 {

string Foo (object o ()

} // end interface I1

public interface I2 {

object Foo (string s);

} // end interface I2

public class Ci : I1, I2 {

string I1.Foo (object o ();

} // end class Ci

Note that the explicit definition contains the name of the interface. Explicit
implementations require a fully qualified identifier for the entities with clashing
names.

Unlike implicit interface implementations, explicit ones cannot be declared
as abstract, virtual, override or new modifiers. In addition, they are im-
plicitly public; an implicit definition requires the public modifier. To access a
method that is defined in this way, it is necessary to cast to the appropriate
interface type first, as in:

C1 c = new C1 (. . .)

I1 i1 = (I1)c;

I2 i2 = (I2)c;

. . . = i1.Foo(. . .);

. . . = i2.Foo(. . .);

This hints that interfaces are type definitions, just like classes.
If a base class implements an interface member with the virtual or

abstract modifier, a derived class can override it. If not, the derived class must
contain a reimplementation of the interface in order to override that member.

Consider the example (taken from [5], p.57):

public interface IDesignTimecontrol {

. . .

object Delete ();

} // end interface

public interface IDelete {

void Delete ();

} // end interface

8.4 Methods and Operators 215

public class TextBox : IDelete, IDesignTimeControl {

void IDelete.Delete () { . . . }

object IDesignTImecontrol.Delete () { . . . }

} // end class

public class RichTextBox : TextBox, IDelete {

public void Delete (){ . . . }

} // end class RichTextBox

This example allows the programmer to use a RichTextBox as an IDelete

object. This makes it possible to call RichTextBox’s version of Delete.
In C# a class can be implicitly cast to an interface that the class imple-

ments. If interface X inherits from interface Y, X can be implicitly cast to Y. An
interface can also be cast to any other interface or non-sealed class.

An explicit cast from interface I to a sealed class S is permitted only if S

can implement I.

8.4 Methods and Operators

Methods have a syntax that is similar to Java and C++. Examples of methods
have already been given, so no time will be spent on the fine details. Instead,
attention is paid to binding and some of the language-specific details of meth-
ods.

8.4.1 Dispatch

Unlike Java, C# uses early binding as default. This is the same as C++. In
C#, if the programmer wants late binding, it must be explicitly requested. The
request for a dynamic dispatch takes the form of the virtual annotation, as
in C++.

The corresponding method declaration in C# takes the following form:

public virtual int v_method (char c, int y)

{

// body of v_method

} // end method

Note that v method has a body or implementation. The implementation can
be overridden in a subclass of the class in which a virtual method is declared.
The implementation is required just in case the method is called in an instance
of the class in which it is defined.

216 8. C#

In C++, the definition of a method that overrides a dynamically-dispatched
method consists simply of the declaration of the prototype (signature) plus an
implementation. In C#, the overriding definition is legal only when the override
keyword is present, as in:

public override int v_method (char c, int y)

{

// overriding body

} // end overriding definition

The override keyword must be present to make the overriding definition legal.
Furthermore, the overriding method must have a signature that is identical to
the one that is being overridden.

Once this protocol has been observed, dynamic dispatch works as in other
late-bound languages.

The C# approach to late-bound methods is different from that in Java and
other languages that employ dynamic dispatch as default. Because C# is early
bound by default, it is necessary to tell the compiler that a dynamic dispatch
is required.

The C# approach cleans up a potential cause of errors in C++. It is very
easy to confuse dynamically-dispatched methods with so-called “pure virtual
functions.” The latter are abstract methods and it makes no sense to supply a
body for them. The =0 notation in C++ is a warning that an abstract method
is required and denotes the fact that no body is supplied in the defining class.
It is easy to miss or omit the = 0 or to write an abstract method when a
late-bound one is required.

C# imposes the constraint that abstract and late-bound methods can never
be marked as private. This makes sense because private methods are only
visible in their defining class, thus making it impossible to implement or over-
ride them in any derived class.

Related to the specification of dynamic dispatch is the hiding of methods.
C# allows the hiding (redefinition) of data, function and type members of a
base (super) class. The following is an example of redefinition of a dynamically-
dispatched method:

public class A {

. . .

public virtual void foo () { . . . }

. . .

} // end class A

public class B : A {

. . .

public override void foo () { . . . }

8.4 Methods and Operators 217

. . .

} // end class B

public class C : B {

. . .

public new void foo () { . . . }

. . .

} // end class C

Here, method foo in class C hides the definition in class B. It should be noted
that the keyword new is used to denote the overriding. The signature of the hid-
ing method must be identical to that of the hidden method. The C# language
requires the new keyword whenever a non-virtual method hides the correspond-
ing method in the base class. This is intended to catch errors whereby a method
unintentionally hides a method in one of its superclasses. It is, therefore, pos-
sible to hide early- as well as late-bound methods.

8.4.2 The Base Keyword

It is also often necessary to call methods in the super class or base class. The
C# device for this involves the use of the base keyword. In this case, as in
constructor definition, base refers to the super or base class. The standard
method access operator is used to reference the component of the base class
that is being accessed. Consider a class, C1, that is a subclass of class C and
assume that class C defines a method, m, inside the methods of C1; the following
is a call to the method m in C:

base.m(. . .)

A more extended example will make matters clearer:

class C {

. . .

public int m (int x) {}

. . .

} // end class C

class Cl : C{

. . .

public int m1 (int y, int z)

{

int xx = 0;

. . .

xx = base.m(y);

} // end method m1

218 8. C#

. . .

} // end class C1

This example shows that the base call can return values as well as take para-
meters. The call is the same as a call to an instance but the instance name is
replaced by base.

The C# rule for accessing class members via base states that data, type
and function members can be so accessed (depending upon their access annota-
tions). The process of finding the corresponding member begins with the imme-
diate superclass of the instance making the call and proceeds until a matching
entity has been found. Should there be no matching entity, the compiler will
signal an error.

8.4.3 Parameter Annotations

C#, like Java and C++, uses call-by-value as its standard parameter-passing
method. As in C++, however, it is possible in C# to change the method. To
effect this, C# provides two parameter modifiers, ref and out that modify the
formal parameters of a method.

The ref modifier states that the parameter it modifies must be passed
by reference. An example will help explain this. Consider a class defining the
following method:

public class C {

. . .

public void m (ref int p)

{

p++;

} // end method m

} // end class C

What happens is that, with a ref parameter, a reference to the actual para-
meter is passed instead of the value of that parameter. Thus, the address of
the actual argument is passed to the method. In order to make this work, C#
requires that the ref qualifier be used for each actual parameter that is to be
substituted for a reference parameter.

For each ref parameter, the compiler plants code to pass the address of
that parameter to the called method. The effect is as if the actual and formal
parameter shared the same store. This is the same as the & parameters in C++
and var parameters in Pascal.

To see how this is used, consider a client class that calls m in a method. It is
assumed that the class that defines m is instantiated and the instance is called
inst:

8.4 Methods and Operators 219

public void clientMeth 0

{

int v = 99;

C inst = new C(. . .);

inst.m(ref v);

} // end method clientMeth

After the call to inst.m(v), the local variable v will have 100 as its value. Note
that at the point of call, the ref keyword qualifies the variable v. The ref v

instructs the compiler to pass the address of v instead of the value of v to the
call of inst.m.

The out annotation is the converse of the ref annotation. An out annotation
states that the qualified parameter must be a variable and that it will be bound
to a value on return from the method. It is like the ref parameter in that the
address of the actual parameter is passed into the method so that the formal
and actual parameters share storage. (In fact, in both cases, the pointer is
constant within the method body.)

The following is an example of an out parameter:

private void m (out int x) { x = 99; }

private void user ()

{

int y;

this.m(out y);

} // end method user

When m is called, a constant pointer to the actual parameter y is passed. The
out annotation must precede the actual parameter in the list of actual para-
meters. Inside the body of m, the formal parameter x is treated as a pointer to
a region of storage of the appropriate type. Inside m, it is necessary to assign a
value to x or an error will be signalled by the compiler.

The out parameter is a natural consequence of the C# rule that all variables
must be initialised before their first use. Among other things, it allows private
and protected methods to be defined that perform variable initialisations.

The keyword params is used in C# to allow an arbitrary number of para-
meters of the same type to be passed to a method. The params modifier can
only be used as the last parameter. A simple example shows its use.

class Sums {

. . .

public int add Vec (params int[] nums)

{

int total = 0;

foreach (int i in nums) total += i;

220 8. C#

return total;

} // end method addVec

. . .

public static Main ()

{

int sum7 = 0;

int sum3 = 0;

. . .

sum7 = addvec(l,2,3,4,5,6,7);

sum3 = addvec(5,7,11);

. . .

} // end Main

} // end class Sums

8.4.4 Properties

In Java, it is frequently necessary to write something akin to the following:

foo.getBar(foo.setBar(message, false);

This is sometimes called the use of a property. Properties are a formalisation
of getter/setter method combinations. This is an extremely frequently encoun-
tered pattern, so its formalisation and regularisation is a reasonable idea. The
following exemplifies the use of a property in C#:

public class OceanLiner {

XyCoord loc = null;

public XYCoord Location {

get{ return loc; } // end getter

set{

loc = value;

} // end setter

} // end property

} // end class OceanLiner

This property, Location, is defined to represent the location of an ocean liner.
The property has type XyCoord, which is assumed to be defined and to represent
a Cartesian co–ordinate. Its getter is denoted by the keyword get. The getter,
here, simply returns the value of the private data member . loc. The setter
assigns a value to loc.

The value that is assigned is first bound the implicit parameter value. In
the definition of value, C# introduces a little polymorphism, for value must

8.4 Methods and Operators 221

always be of the correct type in order that the property be well-typed. Thus,
for each property, value is implicitly declared with the appropriate type. The
type must be inferred from the type of the variable to which it is assigned.
Finally, note that the getter and setter are enclosed within brackets that group
them into the property.

The above might be used as follows.

private OceanLiner 1 = new OceanLiner(. . .);

// create an instance of C

private XYCoord position = new XYCoord(. . .);

// create an initial coordinate

qe2.Location = position; // set a value into X

. . .

loc = qe2.Location; // get a value from X

Note that the basic syntax is the same as for public slots (data members).
Assignment consists of a reference to the slot on the left-hand side of the as-
signment, while access consists of a reference on the left-hand side of assignment
or in an inner expression. This removes the need to define explicit setter and
getter functions.

It is possible, in C#, to define an abstract property. In this case, the setter
and getter methods are defined without a body–a semicolon replaces the body
statement. Properties can also be virtual, static or unsafe (the unsafe

keyword introduces methods and blocks within which pointers can be defined,
set and dereferenced and in which pointer arithmetic operations are permitted).
Properties can override and be overridden. Properties can also have access
modifiers–they do not have to be public–they are, in all respects apart from the
definition of setter and getter methods, identical to data or function members
of a class.

Properties are related to so-called virtual slots in some knowledge represen-
tation and object-oriented languages. In this sense, a virtual slot is one whose
value is computed from the values stored in other slots (perhaps in instances of
other objects), rather than being directly stored in the slot. This is a concept
that is of considerable utility, even though it can be somewhat obscure on the
page.

8.4.5 Delegates

C# introduces the concept of the delegate into the C++ family of languages.
A delegate is a type that defines a method signature. A delegate instance can,
therefore, represent and invoke a method or list of methods that match the

222 8. C#

delegate’s signature. The declaration of a delegate consists of a name and a
method signature. The signature of a delegate includes the return type and
can also contaln parameter modifiers in its parameter list. The actual name of
any matching method is irrelevant to the delegate.

An example delegate is:

delegate int ExampleDelegate (ref int x, bool b);

This definition allows the programmer to create instances of the delegate that
contain and invoke methods that return an int when supplied with a refer-
ence to an integer and a boolean value. This delegate might be instantiated as
follows:

ExampleDelegate foo = new ExampleDelegate(RealMethod);

public int RealMethod (ref int x, bool flg)

{

// body of RealMethod

} // end method RealMethod

If a delegate has a void return type, it is a multicast delegate. Multicast delegates
can contain and invoke more than one method.

The operator += is used to add methods to a multicast delegate. The
following code fragment shows this in a fairly abstract setting:

class ExampleClass {

delegate void MultiCaller ();

private void TestDelegates ()

{

MultiCaller m = null;

m += new MultiCaller(Alpha);

m += new MultiCaller(Beta);

m()

} // end TestDelegates

} // end class ExampleClass

In this example, MultiCaller is defined as a multicast delegate. Inside the
method TestDelegates, two methods, Alpha and Beta are added to m, an
instance of MultiCaller, which is executed via the call m(). A delegate can be
removed from a list using the -= operator.

It is possible, though somewhat low-level, to think of a delegate as a pointer
to a method or list of methods with the same signature.

Delegates solve problems that must be handled in C++ with function point-
ers or in Java by interfaces.

Methods can be overloaded in C# in a fashion similar to Java and C++.
The process of overloading is the same as in these other languages. However,

8.4 Methods and Operators 223

the existence of ref, out and params parameters makes for slightly richer
signatures and, hence, more possible combinations available for overloading.

8.4.6 Operator Overloading

C# allows the programmer to overload operators, provided the operator is from
a restricted set. This is similar to C++, but not identical for the reason that
C# tightens the semantics of overloading slightly and restricts what can be
overloaded.

The operators C# allows to be overloaded are:

+ - ! ++ --

| ^ != > <

>= <=

true false

* (binary only) / % & (binary only)

It should be noted that the assignment operator cannot be overloaded (unlike
in C++) and also that true and false are defined as operators. Attention will
be paid to this convention after more general properties of operators have been
discussed.

An operator is a static method with the keyword operator preceding the
operator to be overloaded and its parameters. For example:

public static bool operator == (T x, T y);

The most frequently overloaded operators are == and ! =, value equality and
its negation. The value of the argument expressions are compared. When over-
loading the == operator in C#, it is necessary to overload the Equals method.
This makes newly defined classes consistent with other classes in Microsoft’s
.NET framework, and it also allows classes the perform equality overloading to
act transparently as base classes. The following is an example:

public class XYCoord {

double x = 0.0;

double y = 0.0;

public static bool operator == (XYCoord cl, XYCoord c2)

{

return (cl.x == c2.x && cl.y == c2.y);

} // end operator ==

public static bool operator != (XyCoord c1, XYCoord c2)

{

return (c1.x != c2.x || c1y != c2.y);

224 8. C#

} // end operator !=

public override bool Equals (object o)

{

if (o is XYCoord)

return this.==(XYCoord o);

else return false;

} // end method Equals

} // end class

Note how the overridden definition of Equals redirects control to the locally
defined equality operator.

C# divides operators into logical pairs. Equality and its negation form
one pair; less than and greater than form another pair, and so on. It is a
requirement in C# that, if one of a logical pair of operators is overloaded,
the other operator should also be overloaded. In the example above, the ==
operator was overloaded; in order to comply with the C# requirement, != was
overloaded as well.

The keywords true and false are used as operators when defining types
with three-state (or three-valued) logic (this is used by the C strcmp function).
The use of true and false is to allow tri-state logic operations to be integrated
with the more standard two-valued ones. The following is intended to show
how this overriding might be used:

public class C {

private int x = 0;

. . .

public static bool operator true (C c)

{

return c.x == 1;

} // end operator true

public static bool operator false (C c)

{

return c.x == -1;

} // end operator false

public bool undefined (C c)

{

return c.x == 0;

} // end method undefined

} // end class C

In this example, the value of x is used to determine the truth value. If x is
one, it is taken to be true; if it is minus one, it is assumed to be false. This
will allow the class C to be integrated with conditionals and loops because the

8.5 Polymorphism and Types 225

value of x is now interpreted, thanks to the above, as a boolean value. The
problem remains that there is the possibility that x will take the value zero.
This is taken into account above by defining a method as undefined that tests
for this case.

The operators && and || are defined in terms of their bitwise counterparts
in C#. This has the implication that neither need be overloaded. The array
indexing operation [] can be overloaded using indexers. Assignment, as noted
above, cannot be overloaded in C#, but combinations such as += are automat-
ically evaluated from their corresponding binary operators, thus permitting
type–specific behaviours in the presence of overloading.

8.5 Polymorphism and Types

C# has an interesting approach to types. In this section, the opportunities for
polymorphism afforded by C# are reviewed. Then the concept of the struct

is described and its use in the language is discussed. The use of structs is
of some interest because it unifies the type system and offers the programmer
considerable flexibility in representation.

Like all object-oriented languages, C# supports polymorphism. Some ex-
amples have already been encountered in this chapter:

– the implicit polymorphism introduced by the inheritance chain with its con-
comitant operations of up- and downcasting;

– the polymorphism introduced by constructor, method and operator overload-
ing.

These forms of polymorphism are common to all object-oriented languages and
have been extensively discussed in previous chapters. C#, in this respect, is a
conservative language.

8.5.1 Structs

Instances of C# classes are created in the heap. This implies that all access to
instances is by means of a pointer. Classes can be considered to be reference
types. It is often desirable to allocate instances on the stack. C++ permits this,
as does Eiffel [53]. In Eiffel, there is a conceptual distinction between reference
types and value types.

Eiffel value types are allocated on the runtime stack and their lifetime is
restricted to that of the block in which they are declared (C++ imposes the

226 8. C#

same restriction for stack-allocated instances). The syntax of value and refer-
ence types in Eiffel is the same. Eiffel makes semantic distinctions between the
two kinds of type.

C# makes a distinction similar to that of Eiffel but reintroduces the concept
of the struct. In C++, structures can be defined as well as classes. In some of
the C++ references, for example [75], the keyword struct is used as a synonym
for class.

Syntactically, a C# struct is similar to a class but is semantically different
and there are properties of classes that are not shared by structs. Within a
C# struct, it is possible to define data and function members (data slots and
methods), as well as type members.

Although related, the C# conceptions of struct and class are distinct and
there are differences that are enforced semantically.

A class defines a reference type while a struct is a value type. As a
consequence, structs usually define simple types for which value semantics is
more appropriate. For example, value types employ a bitwise copy model for
assignment and reference types implement assignment as a pointer or reference
copy. When an object of a value type is assigned to a variable, the contents
of the object are copied to the variable. This copy is performed byte-by-byte
(by extension, bit-by-bit). When assigning a reference to a variable, only the
pointer is copied.

Next, C# classes require full inheritance for their definition. A struct, on the
other hand, inherits from the root class, object, and is implicitly sealed. Both
classes and structs can implement interfaces, however, so structs can engage in
a limited form of inheritance.

It is permitted to define a parameterless constructor in C# classes. It is also
possible to initialise data members within a class. In a struct, these operations
are not permitted. The default parameterless constructor for a struct initialises
each slot with a default value (zero for most types). If a struct defines a con-
structor, all of its slots must be assigned by the constructor. This constraint
applies to all constructors that a struct defines.

Classes in C# are permitted to have destructors. As mentioned above, a
destructor is a method that calls a finalization method. This method is used to
tidy an instance up before the storage it occupies is collected as garbage by the
storage manager (garbage collector). Because value types are stack allocated
and have a lifetime that is controlled by the scope at which they reside, de-
structor methods make no sense for them. When a struct goes out of scope, the
storage it occupies is returned to the stack and recycled in the usual manner
when entering and leaving a scope.

There are rules relating to polymorphism that structs obey. These rules are
similar to those for classes. For example, a struct can be implicitly cast to an

8.5 Polymorphism and Types 227

interface that a class implements. (The interface defined by class is, in effect,
the definition of the class without its data and type members and with no
implementations.) In addition, a cast from an interface I to a sealed struct S
is permitted only if S can implement I.

8.5.2 Type Unification

The existence of value types allows C# to provide a unifying mechanism for
types. This facility is absent in Java and C++ and is, to my knowledge, quite
novel for there is no other language I know of that can do this.

In most languages, there is a sharp distinction between primitive types like
int, char and bool and user-defined types. C# is designed from the viewpoint
that all primitive types should be defined as structs. The name of each C#
primitive type is just an alias for a system-defined type that is defined as a
struct. For example, int is an alias for the type System.Int32 and long is
an alias for System.Int64. This, in itself, seems of little interest until it is
remembered that a struct can define methods, which has the implication that
primitive types can be defined as structs that define the methods that operate
on that type. Thus, the System.Int32 struct defines arithmetic operations as
well as methods like ToString, an operation that converts the value to a string
for printing. Because C# operators can be overloaded, the operations defined
for primitive types can be applied to any class or struct type. This has the
implication that +, for example, can be extended from an integer operation to
an operation, say, over polar coordinates.

It is possible to define new primitive types by defining the appropriate
struct. This is a powerful feature.

C# reference types can be handled generically because it is possible for
multiple reference types to share the properties of a common ancestor type.
For example, a method that takes a reference to type T can be applied to any
type that is derived from, or implements, T. To perform the same operations
on value as well as reference types, every value type has a corresponding hidden
reference type. Instances of this hidden type are created when the value type
is cast to a reference type. The C# term for this is boxing.

Boxing avoids a problem with Java. In Java, the primitive types are ac-
companied by a set of wrapper types. Thus, the Java primitive type int is
accompanied by a class type Integer. The Integer type wraps an object of
type int and allows it to be treated like any other reference type. Unfortunately,
it is necessary, in Java, to perform the wrapping and unwrapping manually. C#
performs these operations automatically.

228 8. C#

The following is an example of boxing and unboxing.

class queue {

. . .

public void Enqueue (object o) { . . . }

public object Dequeue () { . . . return . . . }

} // end class queue

Queue q = new Queue ();

q.Enqueue(99); // box the int value 99

int val = (int) q.Dequeue (); // unbox the int value

In the example (taken from [5], p.17), a class implementing a FIFO queue
is defined. The class has a method for enqueueing objects and a method for
dequeuing them. To make the methods completely general, the type object is
used for their parameter and return types, respectively.

Next, a queue object is created by instantiation and an int value (99) is
enqueued. In Java, this would require the programmer to write:

q.Enqueue(new Integer(99));

The C# compiler, however, detects the fact that a primitive type is being
implicitly cast to a reference type and boxes the int value. On the next line,
a dequeue operation is performed. Here, there is an explicit cast to a primitive
type, so the compiler inserts code to unbox the object to an int. In Java, this
would require the programmer to write an explicit unwrapping by calling a
method defined in Integer:

Integer ival = (Integer)q.Dequeue ();

int val = ival.intvalue ();

(This could be written on one line but the above is considered clearer for
expository purposes.)

Boxing and unboxing are consequences of the unified approach to types
adopted for C#. This principle implies that all types should be treated identi-
cally.

Finally, C# restores the enum from C++ that was omitted from Java. Enu-
merations were removed from Java because its guiding principle was to max-
imise the benefit of classes. Since an enumeration can be written as a sequence
of static manifest constants that constitute the body of a class, the enumera-
tion was considered redundant. This was unfortunate because of the notational
convenience represented by the enum. C# enums are represented by default as
non-negative integer constants. It is possible to change the representation and
to provide explicit values for the elements (the latter is possible for the default
representation), for example:

8.6 Base Class Library 229

public enum Colour : byte {

Red=1, Green=3, Blue=5, Yellow=7

}

The operations that can be applied to enums form a fairly extensive set. Com-
parison, addition and subtraction, assignment (including += and -=), increment,
decrement and the size operation are all permitted. In addition, enums can be
converted to and from numeric types. A special case is the literal constant zero
(“0”), which can be implicitly converted to an enum.

8.6 Base Class Library

Independent of the .NET framework is the C# Base Class Library. This is a
large library of useful classes, similar in scope and content to the Java class
libraries. The Base Class Library is used to construct working C# programs.
The entities it defines are all C# classes.

The Base Class Library contains classes to implement the following:

– core types;

– text;

– collections;

– streams and I/O;

– networking;

– threads;

– security;

– reflection;

– serialisation;

– remoting (remote method calls);

– web services;

– data access;

– XML;

– graphics;

– rich client applications support;

– Web-based applications;

230 8. C#

– globalisation;

– configuration;

– advanced component services;

– assemblies;

– diagnostics and debugging;

– inter-operation with unmanaged code;

– component and tool support;

– runtime support;

– native OS facilities.

The Base Class Library is provided to support programming. It does not extend
the language but makes extensive use of its facilities. Because it does not extend
the language, it will not be considered in any more detail.

EXERCISES

8.1. C# is intended to be a reply to Java. How successful is it?

8.2. Relate C# to Delphi Pascal. What does C# have that Delphi Pascal
does not (and vice versa)?

8.3. What is the point of the static constructor in C#?

8.4. What role do indexers play in C#?

8.5. Explain what the base keyword does in C# methods.

8.6. C# contains the concept of a “delegate”. Explain delegates in C#
and justify their inclusion.

8.7. In Java, there is an informal convention for naming data member
getter and setter functions. In C#, it is possible to have the compiler
do this by means of properties. Does this make programming easier?

8.8. Describe the C# approach to polymorphism. Is it different from that
employed in Java or Eiffel? If so, how.

8.9. Produce an extended analysis of the C# type system. In the docu-
ment, relate C#’s approach to that of other class-based languages.
Does the C# approach introduce any novelties and does it improve
upon the other languages?

9
BeCecil

9.1 Introduction

BeCecil stands for Block-structured extensible Cecil. It is a theoretical core
language with multi-methods. The aims of BeCecil were to be as simple as
possible and to be an orthogonal version of languages like Cecil, CLOS and
Dylan. BeCecil is able, within the confines of a small language, to express a
wide variety of programming patterns including abstract data types, procedural
patterns and, of course, object-oriented ones. BeCecil, like Cecil, is a prototype-
based language. It is possible for BeCecil programs to be defined that display
other kinds of behaviour. BeCecil supports the following programming idioms:

– BeCecil supports a prototype-based object model that unifies classes and in-
stances into a single object concept. It supports inheritance between objects;
multiple inheritance is supported;

– BeCecil supports mutable state and object identity;

– BeCecil supports multi-methods. They are collected as generic function ob-
jects that have first-class status. Each multi-method case of a generic function
can be a nested, lexically-scoped closure. Unlike Dylan or CLOS, BeCecil’s
multi-methods are not linearised in terms of specificity. Specificity-based lin-
earisation permits ambiguous definitions;

– instance variables are modelled as a special kind of multi-method implemen-
tation. This integrates them into the method dispatch mechanism;

232 9. BeCecil

– BeCecil has a static type system that separates types from objects and sub-
typing from code inheritance. It also guarantees that all dynamically dis-
patched messages reach the most specific matching multi-method case at
runtime;

– extensible, customisable objects are supported. Generic functions, super-
classes and supertypes can be added to existing objects or types by external
clients of those types;

– BeCecil supports scoping and encapsulation of all declarations, including ob-
ject, type, inheritance, subtyping and multi-method declarations. This limits
their static visibility and dynamic effect to a restricted region of program
text. This feature allows clients to extend existing objects in a nested scope,
thus hiding extensions from other, unrelated clients. It also supports the
traditional encapsulation of an object’s hidden state;

– BeCecil supports a notion of separate type checking. Modules (named collec-
tions of declarations) can be statically type checked in isolation from clients,
unrelated modules, and any extending modules. Multi-methods cause prob-
lems for modular type checking; ambiguities can arise between different ad-
ditions of multi-method cases to a common generic function.

BeCecil is intended to be a core subset of Cecil. It does not model all of
Cecil directly, however. It does not model non-local returns, predicate classes
and parameterised types.

The remainder of this chapter is intended only to give a flavour of what
can be done in BeCecil. The source for these examples is [22]. The interested
reader is recommended to browse the Web site at WWW. cs washington.edu
for more information on Cecil and related topics.

For reasons of space, it is not possible to cover all aspects of BeCecil. Instead,
the aim, in this chapter, is to show how a core language can be used to express
many common idioms. More examples can be found in [22]. I hope that the
reader will find study of BeCecil (and Cecil) as rewarding and stimulating as I
have.

9.2 Programming Standard OO Mechanisms

An object can only be created by an object declaration. Objects in a program
can act as classes or instances in other object-oriented languages. Each object
has a unique identity. The following is the declaration of a class Point rep.
(Following Chambers and Leavens [22] the suffix rep (standing for “represen-
tation”) is used to distinguish classes from types in examples.)

9.2 Programming Standard OO Mechanisms 233

object Point_rep

An object can be declared to inherit from another object by an inheritance
declaration. More than one inheritance declaration can be used with the same
object, in which case multiple inheritance is used. The following states that
the object called Points rep inherits from an object called any and declares
another object CP rep (representation of coloured points) that inherits from
Points rep and an object called Colour rep. The any object is the root object.

Point_rep inherits any

object CP_rep

CP_rep inherits Point_rep

CP_rep inherits Co1or_rep

In BeCecil, there is no distinction between inheritance and the “instance
of” relationships. BeCecil therefore resembles a prototype-based language. For
the reason that an instance of a class is merely an object that inherits from that
class, instances of a class are created in exactly the same way as are subclasses.
The following declares an instance of Point rep called my point:

object my_point

my_point inherits Point_rep

BeCecil objects can also be generic functions. A BeCecil generic function
is similar to a collection of multi-methods in CLOS. Unlike CLOS or Dylan,
the methods in a BeCecil generic function need not all have the same arity. To
define the generic function equal, the following would be needed:

object equal

equal inherits GenericFun_rep

The generic function equal can be extended by means of a has declaration.
This adds a method to a generic function. For the following example, it is
necessary to assume that the generic functions x and y are implemented for
points. The following is a generic function that is specialised to two Point rep

arguments:

equal has method (p1@Point_rep, p2@Point_rep) {

and(equal(x(pl) ,x(p2)) ,equal(y(p1) ,y(p2)))

}

Note the unusual syntax: F@CN , where F is a formal parameter name and CN

is the name of a class or type. The symbol denotes a typing, so p1Point rep

states that p1 must be of the type of Point rep. In Cecil and BeCecil, the CN

component is called the specialiser object.
The instance variables of an object are modelled in BeCecil; they do not

form an integral part of an object. The construct that models instance variables

234 9. BeCecil

is called a storage table. Storage tables relate keys to values. Keys consist of
a tuple of object identities and values are single objects. BeCecil’s generic
functions can contain both storage tables and methods. The reading of a storage
table is similar to applying a generic function. If no value is currently stored in
a storage table, a default value is returned.

Consider the following example in which x and y are objects that act as
instance variables. Each instance variable is modelled as a generic function that
has a storage (storage table) attribute. The storage table can be thought of as
mappings from points to integers. The := 0 in each storage table declaration
provides the default value (here, 0).

object x

x inherits GenericFun_rep

x has storage (p@Point_rep) := 0

object y

y inherits GenericFun_rep

y has storage (p@Point_rep) := 0

Storage tables can be modified using an assignment expression. In assignments,
the expression on the left-hand side of the := provides the key, while that on
the right-hand side provides the value that is to be associated with the key.
Thus, the x co–ordinate of myPoint can be set to 3 by:

x(mypoint) := 3

Storage tables can also be used to represent program variables. The following
shows this:

object my_var

my_var has storage() := 0

my_var() := 255

plus(my_var(), 1)

The result of the last expression will be 256.
BeCecil has acceptors. Acceptors are like methods and can process an ar-

gument. Acceptors allow any storage table to be replaced by an acceptor and
a method. They also permit the equivalent of “write-only” fields (slots). When
used in an assignment, the key is bound to the formal-parameters and the value
is bound to the identifier that is to be found on the right-hand side of the := in
the acceptor’s declaration. The following example shows the use of acceptors:

object xy

xy inherits GenericFun_rep

xy has acceptor (p@Point_rep) := V {

x(p) := V

9.2 Programming Standard OO Mechanisms 235

y(p) := V

}

The following expression will, therefore, return 28:

xy(myPoint) := 14

plus (x(myPoint), y(myPoint))

Dispatch in assignments is dynamic (like method dispatch). However, in assign-
ments, only the specialisers of the generic function’s acceptors and storage ta-
bles are considered. A generic function’s methods are ignored when dispatching
an assignment. Similarly, when dispatching an application, only the methods
and storage tables of a generic function are considered.

To achieve information hiding, BeCecil has the capability to hide a recur-
sive declaration sequence. This was chosen because it affords the ability to
hide generic functions. This is implemented as BeCecil’s hide declaration. It
is similar to the local declaration in Standard ML [36, 37] in that declarations
in its declaration sequence are visible only in the sequence that follows the in

keyword. The following example (from [22], p. 8, spellings mine) demonstrates
the use of hide construct:

object Greyscale_rep

Greyscale_rep inherits Colour_rep

hide

object scale

scale inherits GenericFun_rep

scale has storage (c@Greyscale_rep) := 0

in

initialize has

method (c@Greyscale_rep, intensity@float_rep)

{

scale(c) :=

truncate (multiply (min(max (0.0, intensity), 1.0),

255.0));

c

}

intensity has method (c@Greyscale_rep) {

divide (mkFloat (scale(c)), 255.0)

}

paint has method (c@Greyscale_rep, r@Region_rep {

. . .

}

end

intensity has acceptor (c@Greyscale_rep) := f {

236 9. BeCecil

initialize(c,f)

}

There is a great deal to say about this example.
The above constitutes an implementation of a grey-scale model of colours.

The interface presented to clients allows them to create a colour that is based
on grey intensities expressed as a floating-point number between 0.0 and 1.0.
The hardware uses a 0 to 255 representation, however. Since the hardware
might change, it is required to enforce the invariant that every instance has all
its intensities represented by integers in the 0 to 255 range. This enforcement
is performed by hiding the storage table for instances of this class. The code
resembles a C++ class declaration with a private and a public part (the private
part coming before the public one).

It is, of course, possible to over-ride methods inherited from a superclass.
In BeCecil, it is possible to use a directed form of actual arguments. In this
form, the expression is written followed by the symbol and a list of class names.
The method selected must be one that has both the object that is the value
of the expression and at least one of the named classes inherited from the
corresponding formal parameter’s specialiser. The following example shows how
the GreyPoint rep class would be written as a subclass of Point rep and
Greyscale rep:

object GreyPoint_rep

GreyPoint_rep inherits Point_rep

GreyPoint_rep inherits Greyscale_rep

initialize has method (gsp@GreyPoint_rep, i@int_rep,

j@int_rep, intensity@float_rep)

{

initialize (gsp@Greyscale_rep, intensity);

initialize(gsp@Point_rep, i, j);

gsp

}

object mkGSP

mkGSP inherits GenericFun_rep

mkGSP has method (i@int_rep, j@int_rep, intensity@float_rep)

{

object res

res inherits GreyPoint_rep

initialize (res, i, j, intensity)

}

equal has method (gsp1@GreyPoint_rep1 gsp2@GreyPoint_rep)

9.3 Syntactic Sugar 237

{

and(equal(intensity(gsp1), intensity(gsp2)),

equal (gsp1@Point_rep1 gsp2@Point_rep))

}

Notice how the equal and initialise methods uses directed arguments to call the
methods specialised on Point rep and Greyscale rep.

Generic functions are objects. This has the consequence that they can be
used as first-class procedures. The following generic function can act as a while-
loop.

The generic function while has a method that takes two generic function
arguments. These are a condition (c) and a statement (s). These generic func-
tions are expected to have zero-argument methods that can be executed in
order to perform parts of the loop. The implementation depends upon the exis-
tence of another higher-order generic function, ifTrue; it takes a boolean and
a generic function as arguments. The ifTrue function calls the generic func-
tion with zero arguments if the boolean evaluates to true. The generic function
loop, passed as the second argument to ifTrue is declared within the method
for while. Because the standard static closures are constructed for methods,
c and s within the loop refer to the formal parameters of the while method
(hence, at runtime, are bound to while’s actual parameters).

object while

while inherits GenericFun_rep

while has method (c@GenericFun_rep, s@GenericFun_rep)

{

object loop

loop inherits GenericFun_rep

loop has method (){ s(); while(c, s)}

ifTrue(c(), loop)

}

9.3 Syntactic Sugar

As can be seen from the above examples, BeCecil provides a number of syn-
tactic sugars for the declaration of variables, inheritance, instantiation, generic
function declaration, formal arguments, expressions and so on. This makes the
core language somewhat easier to write than would otherwise be the case.

238 9. BeCecil

9.4 A Small Example

In this section, the sugared BeCecil code will be given that implements a list in
terms of abstract classes. The reader should have no problems in relating the
following code to the core language presented above.

The example exploits abstraction in BeCecil. Two abstract classes are used,
list rep and nonempty rep, a concrete object, nil, and a concrete class
cons rep. The abstract class list rep defines the protocol for accessing the
elements of a list and provides a general implementation of do that can be
inherited by concrete objects.

object list_rep inherits any

gf isEmpty - - to be implemented by subclasses

gf do - - to be implemented by subclasses

fun length (c@collection_rep) {

var res := 0

do (c,

anon method (x) {res() := plus(res(), 1); nothing})

}

For the reason that BeCecil does not distinguish between classes and ob-
jects, the empty list can be represented as a concrete object that inherits from
list rep.

object nil inherits list_rep

isEmpty has method (n@nil) { nil }

head has method (n@nil) { head(n) } -- loop forever!

There now follows the code for nonempty rep and cons rep. These two
classes are used so that one can inherit isEmpty from nonempty rep more easily.
The slots of cons rep are hidden; this makes them similar to instance variables
in a more traditional language (it is unclear how the protected annotation of
C++, Java and C# can be supported). An initialisation method is used to
allow subclasses of cons rep to initialise the hidden fields.

object nonempty_rep inherits list_rep

isEmpty has method (l@nonempty_rep) { false }

object default_list_elem inherits any

object cons_rep inherits nonempty_rep

gf initialize -- generic initialiation function

hide

field hd of cons_rep := default_list_elem

9.5 Concluding Remarks 239

field tl of cons_rep := nil

in

initialize has method (c@cons_rep, x, l@list_rep) {

hd(c) := x

tl(c) := 1;

c

}

tail has method (l@cons_rep) { tl(l) }

head has method (l@cons_rep) { hd(l) }

tail has acceptor (l@cons_rep) := new_tail

{ tl(l) := new_tail }

head has acceptor (l@cons_rep) := new_head

{ hd(l) := new_head }

end

fun cons (x, l@list_rep){ initialize(new cons_rep, x, 1) }

The implementation of equal is broken into three cases and uses multi-
method dispatch:

equal has method (x@list_rep, y@list_rep) { false }

equal has method (x@nil, y@nil) { true }

equal has method (x@nonempty_rep, y@nonempty_rep) {

and (equal(hd(x), hd(y)), [equal(tl(x), tl(y))])

}

9.5 Concluding Remarks

Considerably more could be said about BeCecil (and, indeed, about Cecil).
The temptation to make this chapter very much longer has been resisted for
the reason that these languages might not be to everyone’s taste. For my own
part, I find them fascinating and believe that they point towards the future
of object-oriented programming, both in terms of language and in terms of
methods. The aim of this chapter was to whet the appetite for these languages;
I hope I have done that and I urge readers to discover more for themselves.

EXERCISES

9.1. Compare BeCecil to SELF or Omega. How far can BeCecil be con-
sidered a prototype language?

240 9. BeCecil

9.2. Describe the runtime operation of generic functions. What are the
main bottlenecks imposed by generic functions?

9.3. BeCecil uses generic functions to represent methods. This implies a
textual separation between objects and methods. Does the choice of
generic functions have advantages for BeCecil that would be absent
if a more usual method were adopted?

9.4. Prototype languages are based on cloning and modification. How is
this approach related to that in BeCecil?

9.5. Write a piece of BeCecil code to implement a stack object.

9.6. Does BeCecil really belong to a different paradigm in the sense that
calling it an example of a prototype-based language is erroneous?

Bibliography

[1] Agha, G. and Hewitt, C., Actors: Conceptual Foundation for Concur-
rent Object-Oriented Programming, in Wegner, P. and Shriver, B. eds.,
Research Directions in Object-Oriented Programming, MIT Press, Cam-
bridge, MA, pp. 49–74, 1987.

[2] Agha, G., Actors: A Model of Concurrent Computation in Distributed Sys-
tems, MIT Press, Cambridge, MA, 1986.

[3] Agha, G., Mason, I. A., Smith, S. F. and Talcott, C. L., A Foundation
for Actor Computation, Functional Programming, Vol.1, No.1, pp. 1–68,
1993.

[4] Aho, A. V., Sethi, R. and Uliman, J. D., Compilers: Principles, Tech-
niques, and Tools, Addison-Wesley, Reading, MA, 1986.

[5] Albahari, B., Drayton, P. and Merrill, B., C# Essentials, O’Reilly and
Associates, 2001.

[6] Apple Computer Inc., Dylan Interim Reference Manual, Apple Cambridge,
Cambridge, MA, Web site, 1985.

[7] Bakker, J., Object-oriented Modelling of Object-oriented Information Sys-
tems, PhD Dissertation, Department of Computer Science, Maastricht
University, 1992.

[8] Barnes, John., Programming in Ada95, Addison-Wesley, Wokingham,
1996.

[9] Birtwistle, G., Dahl, O.-J., Myhrhaug, B. and Nygaard, K., Simula Begin,
Petrocelli/Charter, New York, 1973.

242 Bibliography

[10] Blachek, G., Object-oriented Programming, Programming with Prototypes,
Springer-Verlag, Heidelberg, 1994.

[11] Booch, C., Software Components using ADA, Addison-Wesley, Reading,
MA, 1988.

[12] Booch, C., Software Engineering with Ada, Benjamin/Cummings, Menlo
Park, CA, 1983.

[13] Briot, Jean-Pierre, Actalk: A Testbed for Classifying and Designing Ac-
tor Languages in the Smalltalk-80 Environment, in Proc. ECOOOP-89,
pp. 109–129, Cambridge University Press, 1989.

[14] Bobrow, D. C. and Stefik, M. J., The LOOPS Manual, Tech. Report No.
KBVLSI-81-13, and subsequent revisions, Xerox Palo Alto Research Cen-
ter, Palo Alto, CA, 1983.

[15] Bracha, C. and Lindstrom, C., Modularity meets inheritance, in Mey-
rowltz, N. (ed.), Proc. OOPSLA/ECO OP 90, pp. 303–311, IEEE Com-
puter Society Press, 1991.

[16] Bracha, C., The Programming Language Jigsaw: Mirins, Modularity and
Multiple Inheritance, PhD Dissertation, University of Utah, March, 1992.

[17] Bracha, C. and Cook, W., Mixin-based Inheritance, in Proc. IEEE Com-
puter Society International Conference on Computer Languages, pp. 303–
311, 1990.

[18] Burge, W., Recursive Programming Techniques, Addison-Wesley, Reading,
MA, 1975.

[19] Burstall, R. M., Sanella, D. B. and Sanella, D. T., Hope: An Experimental
Applicative Language, Technical Report CSR-62-80, Department of Com-
puter Science, Edinburgh University, 1980.

[20] Canon, H., Favors, A Non-Hierarchical Approach to Object-Oriented Pro-
gramming, Draft, MIT Computer Science Laboratory, 1982.

[21] Cardelli, L., Obliq: A Language with Distributed Scope, from Digital Equip-
ment Corp., Systems Research Center Web site.

[22] Chambers, C. and Leavens, C. T., BeCecil, A Core Object-Oriented Lan-
guage with Block Structure and Multimethods: Semantics and Typing,
Technical Report UW-CSE-96-12-02, Dept. of Computer Science, Univer-
sity of Washington, December, 1996.

[23] Chambers, C., The Cecil Language: Specification and Rationale, Technical
Report No.93-03-OS, Computer Science Dept., University of Washington,
1993.

Bibliography 243

[24] Chambers, Craig, The Design and Implementation of the SELF Compiler,
an Optimizing Compiler for Object-Oriented Programming Languages, De-
partment of Computer Science, Stanford University, 1992.

[25] Clinger, W. and Rees, J., (eds.), Revised4 Report on the Algorithmic Lan-
guage Scheme, Artificial Intelligence Laboratory, MIT, Cambridge, MA,
1991.

[26] Codenie, W., Steyaert, P. and Lucas, C., Nested Mixins in AGORA, Posi-
tion paper to ECOOP 92 Workshop on Multiple Inheritance and Multiple
Subtyping, pp. 29–31, 1992.

[27] Cook, W., A Denotational Semantics of Inheritance, PhD Dissertation,
Department of Computer Science, Brown University, Providence, RI, 1989.

[28] Craig, I.D., A Reflective Production System, Kybernetes, Vol.23, No.3,
pp. 20–35, 1994.

[29] Craig, I.D., Rule Interpreters in Elektra, Kybernetes, Vol.24, No.3, pp. 41–
53, 1995.

[30] Craig, I. D., The Dylan Programming Language, Springer-Verlag, London,
1995.

[31] Dahl, O.-J., Myrhaug, B. and Nygaard, K., SIMULA 67 Common Base
Language, Norwegian Computing Center, Oslo, 1968, 1970, 1972, 1984.

[32] Flanagan, D., JavaScript—The Definitive Guide, O’Reilly, Sebastopol,
CA, 1998.

[33] Fraser, A. C., On the Meaning of Names in Programming Systems, Com-
mun:cations of the ACM, Vol.14, No.6, pp. 409–416, 1971.

[34] Coldberg, A. and Robson, D, Smalltalk-80: The Language and Its Imple-
mentation, Addison-Wesley, Reading, MA, 1983.

[35] Halstead, R., Multilisp: A Language for Concurrent Symbolic Computa-
tion, TOPLAS, Vol.7, No.4, pp.501–538, 1985.

[36] Milner, R., Tofte, M. and Harper, R., The Definition of Standard ML, MIT
Press, Cambridge, MA, 1990.

[37] Harper, R. and Mitchell, K., Introduction to Standard ML, Laboratory for
Foundations of Computer Science, Dept of Computer Science, Edinburgh
University, 1986.

[38] Harper, R. and Pierce B., A Record Calculus based on Symmetric Con-
catenation, Proc. ACM Eighteenth Annual ACM Symposium on Principles
of Programming Languages, pp. 131–142, 1991.

244 Bibliography

[39] Henderson, P., Functional Programming, Prentice-Hall, Hemel Hempstead,
1980.

[40] Hense, A. V., Denotational Semantics of an Object-oriented Programming
Language with Explicit Wrappers, Formal Aspects of Computing, Vol.3,
1992.

[41] Hewitt, Carl, Viewing Control Structures as Patterns of Passing Messages,
Artificial Intelligence Journal, Vol.8, pp. 323–364, 1977.

[42] Kikczales, C. and Rodriguez, L., Efficient Method Dispatch in PCL, Xerox
Palo Alto Research Center, Web page.

[43] Kristensen, B. B., Madsen, O. L., Moller-Pedersen, B. and Nygaard, K.,
The Beta Programming Language, in Wegner, P. and Shriver, B. (eds.),
Research Directions in Object-Oriented Programming, MIT Press, Cam-
bridge, MA, pp. 7–48, 1987.

[44] Lieberman, H., Using Prototypical Objects to Implement Shared Behavior
in Object Oriented Systems, Proc. OOPSLA-86, pp.214-223, ACM Press,
1986.

[45] Lieberman, H., in Object-Oriented Concurrent Programming, Yonezawa,
A. and Tokoro, M., (eds.), pp. 55–89, MIT Press, Cambridge, MA, 1987.

[46] Liskov, B., et al., Theta Reference Manual, Computation Structures
Group, Memo No.88, Computer Science Lab., MIT, 1995.

[47] van der Linden, P., Just JAVA, 3rd edn, Sun Microsystems/Prentice-Hall,
1998.

[48] Lipmann, S. B., C++ Primer, 2nd edn, Addison-Wesley, Reading, MA,
1991.

[49] Liskov, B., Data Abstraction and Hierarchy, Proc. OOPSLA-87 (adden-
dum to proceedings), Sigplan Notices Special Issue, Vol.23, No.5, pp. 17–
34, 1988.

[50] Madsen, O. L., Issues in Object-Oriented Programming, Computing Sur-
veys, Vol. 29A, No.4, December, 1996.

[51] Madsen, O. L., Block-Structure and Object-Oriented Langnages, in Weg-
ner, P. and Shriver, B. (eds.), Research Directions in Object-Oriented Pro-
gramming, MIT Press, Cambridge, MA, pp. 113-128, 1987.

[52] Malenfant, J., Dony, C. and Cointe, P., Behavioral Reflection in a
Prototype-Based Langnage, Proc. International Workshop on Reflection
and Meta-Level Architecture, pp.143–152, Tokyo, 1992.

Bibliography 245

[53] Meyer, B., Eiffel The Language, Prentice-Hall, Hemel Hempstead, 1992.

[54] FAQ for Eiffel, available from various sources, including the World-Wide
Web and Comp.lang.eiffel.

[55] Padgett, J. A., Eulisp Definition, School of Mathematics, University of
Bath, 1991.

[56] Reiser, M., The Oberon System: User Guide and Programmers Reference
Manual, Addison-Wesley, Wokingham, 1991.

[57] Roberts, R. B. and Goldstein, I. P., The FRL Manual, Memo 409, AI
Laboratory, MIT, Cambridge, MA, 1977.

[58] Rosch, E., Principles of Categorization, in Rosch, E. and Lloyd, B.B.,
(eds.), Cognition and Categorization, Lawrence Erlbaum, Hillsdale, NJ,
1978.

[59] Sakkinen, M., Disciplined Inheritance, Proc. ECOOP89, CUP, 1989.

[60] Sather language definition from International Computer Science Institute
Web Site, Berkeley, CA, 1994.

[61] Philippsen, M., Sather 1.0 Tutorial, International Computer Science Insti-
tute, Berkeley, CA, 1994.

[62] Schalfert, C., et al., An Introduction to Trellis/Owl, Proc. ACM Confer-
ence on Object-oriented Systems, Languages and Applications, SIGPLAN
Notices, ACM Press, pp. 1-8, 1986.

[63] Siegel, J. and Frantz, D., CORBA Fundamentals and Programming, Wiley,
New York, 1996.

[64] Snyder, A., Inheritance and the Development of Encapsulated Software
Systems, in Wegner, P. and Shriver, B. (eds.), Research Directions in
Object-Oriented Programming, MIT Press, Cambridge, MA, pp. 165–188,
1987.

[65] Steele, C. L., ed., Common LISP The Language, 2nd edn, Digital Press,
Maynard, MA, 1990.

[66] Stein, L., Lieberman, H. and Ungar, D., A Shared View of Sharing, in Kim,
W. and Lochovsky, F.H. (eds.), Object-Oriented Concepts, Databases and
Applications, pp. 31–48, ACM Press, 1989.

[67] Stein L. A., Delegation is Inheritance, Proc. OOPSLA-87; SICPLAN No-
tices, ACM Press, Vol.22, No.12, pp. 138–146, 1987.

246 Bibliography

[68] Stefik, M. J. and Bobrow, D. B., Object-Oriented Programming: Themes
and Variations, in Richer, M., AI Tools and Techniques, pp. 3–45, Ablex
Publishing, Norwood, NJ, 1989.

[69] Steyaert, P., Open Design of Object-Oriented Languages, PhD Disserta-
tion, Department of Computer Science, Vrije University of Brussels, 1994.

[70] Steyaert, P., Codenie, W., D’Hondt, T., De Hondt, K., Lucas, C. and van
Limberghen, M., Nested Mixins in Agora, Proc. ECOOP 93, pp. 197–219,
Springer-Verlag, 1993.

[71] Strachey, C., Towards a Formal Semantics, in Steele, T.B. (ed.), Formal
Language Description Languages, North-Holland, Amsterdam, pp. 198–
220, 1966.

[72] Strachey, C., The Varieties of Programming Languages, Technical Mono-
graph PRC-10, Programming Research Group, Oxford University, 1973.

[73] Stroustrup, B., The Design and Evolution of C++, Addison-Wesley, Read-
ing, MA, 1994.

[74] Stroustrup, B., The C++ Programming Language, 2nd edn, Addison-
Wesley, Reading, MA, 1991.

[75] Stroustrup, B., C++ Programming Language, 1st edn, Addison-Wesley,
Reading, MA, 1986.

[76] Taivalsaari, A. and Freeman-Benson, B., Towards Finegrained Reusability
with Self-sufficient Objects, Extended abstract, August 23, 1992. Found on
Web.

[77] Taivalsanri, A., Kevo—A Prototype-based Object-oriented Language based
on Concatenation and Module Operations, November 4, 1992. Found on
Web.

[78] Turner, D. A., Miranda—A Non-strict Functional Language with Polymor-
phic Types, Proc. Conference on Functional Programming Languages and
Computer Architecture, Nancy, France, LNCS, Vol.201, pp. 1–16, 1985.

[79] Ungar, D. and Smith, R. B., Self: The Power of Simplicity, Proc. OOPSLA-
87, SIGPLAN Notices, ACM Press, Vol.22, No.12, pp. 227–242, 1987.

[80] Waterman, D. A. and Hayes-Roth, F. R., Pattern-Directed Inference Sys-
tems, Academic Press, New York, 1978.

[81] Wirth, N., Modula-2, Report No.36, Institüt für Informatik, ETH, Zürich,
Switzerland, 1980.

Bibliography 247

[82] Yonezawa, A., Briot, J.-P. and Shibayama, E., Object-Oriented Concur-
rent Programming in ABCL/1, Proc. OOPSLA-86, SIGPLAN Notices,
Vol.21, No.11, pp. 258–268, 1986.

[83] Yonezawa, A., Shibayama, E., Takada, T. and Honda, Y., Modelling and
Programming in an Object-Oriented Concurrent Language ABCL/1, in
Yonezawa, A. and Tokoro, M., (eds.), Object-Oriented Concurrent Pro-
gramming, pp. 55–89, MIT Press, Cambridge, MA, 1987.

Index

abstract class, 40, 86, 89, 189, 193, 208
– and inheritance, 41
– incompleteness, 60
abstract operation, 86
acceptor (BeCecil), 234
acquaintance, 74
– potential, 75
actor, 57, 73
– acquaintance, 74
– address, 73
– message, 73
ancestor, 35
applicative-order reduction, 134

behavioural replacement, 76
Beta
– block structure, 50
– pattern, 49, 130
– prototype object, 51
binding, 3
– dynamic, 3, 5, 6, 14, 15, 148, 150, 152,

159, 161
– – in Smalltalk, 152
– – runtime type representation, 161
– dynamic in BeCecil, 235
– in Smalltalk, 152
– late, 150
– static, 6, 148, 150, 151, 215
– – in C++, 151
block
– and closure, 139
– Beta, 143
– expression, 140

– SELF, 139
– Smalltalk, 48, 139
boundary
– crisp, 58
– fuzzy, 58

C#
– abstract class, 208
– base keyword, 217
– class
– – finalization, 207
– constructor
– – base class, 211
– – static, 207
– data member, 203
– – static, 204
– function member, 203
– indexer, 208
– inheritance, 210
– instance creation, 205
– interface, 213
– interfaces
– – as type definitions, 214
– member modifiers, 204
– method, 215
– operator, 215
– parameter annotation, 218
– – out, 218
– – ref, 218
– polyadicity
– – params, 219
– properties, 220
– self reference, 210

250 Index

– struct, 225
– type member, 203
– visibility levels, 204
call by name, 135
call by reference, 135
call by value, 134
class, 1, 13, 16, 202
– abstract, 40
– ancestor, 110
– and type, 156
– as abstract data type, 18
– as type, 84, 156
– base, 118
– class, 41
– constructor, 19, 205, 207, 211
– data representation, 22
– derivation, 41, 158
– encapsulation, 3
– extension, 158
– final, 41
– friend, 46, 193
– inner, 202
– inner class, 203
– instance, 20
– instantiation, 2, 158
– interface, 19
– nested, 202
– property, 4
– root, 90, 173
– superclass, 6
– type operation, 194
– variable, 31
class-based programming, 1, 2, 14, 57
class precedence list, 112
clone, 60
cloning, 2, 32, 58, 61, 66
– exact copy, 63
closure, 135, 139
contravariance, 176
covariance, 176
– self-adjusting, 180

data type
– abstract, 18, 158
– encapsulated, 18
deferring in Eiffel, 172
delegation, 58, 67, 72, 122
– actor, 75
– computed, 68, 122
– multiple, 123
– single slot, 68
– versus inheritance, 68
downcasting, 149, 179
– and subtypes, 179

– root class, 173

encapsulation, 3, 14, 16, 18, 19, 44
environment, 135
extension, 25, 87

function
– reader, 24
– writer, 24

generalisation, 34
generic function, 132, 133, 231, 233
– actual method, 133
– method search, 133

implementation
– hiding, 190
indexer, 208
inheritance, 3–6, 13, 14, 34, 35, 58, 83,

148, 210
– aggregation, 124
– and instantiation in BeCecil, 233
– and methods, 131, 146
– clash, 103, 107
– classification, 84
– code sharing, 85, 87, 88
– declaration
– – in BeCecil, 233
– diamond diagram, 108
– dynamic, 68
– exposure, 86, 108
– graph, 39, 100, 106, 108
– – linearisation, 118
– incidental, 84
– interfaces, 120, 121
– lattice, 83, 100, 113
– linear, 39
– linearisation algorithm, 110
– linearised, 106, 110
– mixin, 117
– – modifier, 119
– – wrapper, 119
– multiple, 53, 83, 98
– perspectives, 120
– relation, 58
– repeated rule, 115
– sharing, 85
– simple, 40, 90
– single, 40, 83, 90, 210
– specification sharing, 85
– subtyping, 85
– superclass search, 102
– traversal
– – depth-first, 109–111

Index 251

– – pre-order, 110
– tree, 39, 100, 106
– versus delegation, 68
initialisation
– memberwise, 135
inner statement, 96, 98
instance, 13, 21
– allocation, 225
– creation, 31
– stack allocation, 33
– type, 159
– type of, 159
– variable, 31, 203, 233
instantiation, 20, 31, 65, 185
– type, 168
intension, 25, 87
interface, 213
iterator, 44
– implementation, 46

language
– hybrid, 7
– impure, 7
– pure, 7, 194
lazy evaluation, 135
leftmost-innermost evaluation, 134

message passing, 6, 65
– qualified, 103
– selector, 6
method, 6, 22, 72, 129, 215
– abstract, 91
– and inheritance, 146
– association with object, 130
– body, 6
– higher-order, 144
– object association, 131
– over-riding, 148
– procedure call, 7
– redefinition, 170
– selector, 6
– signature, 132
– – derived method constraint, 132
– specialisation, 92
– table, 6
– visibility, 25
methods
– and prototypes, 64
method selector, 65
mixin, 83, 107, 117, 118
module, 2, 8, 17, 166, 197
– export, 17
– import, 17
– instantiable, 14

module operations, 69
multi-method, 132, 231, 233
multiple inheritance
– alternatives, 120
– in CLOS, 112
– in Eiffel, 115
– multiple copy, 103
– slot replication, 104

normal-order reduction, 135

object, 58
– ancestor, 5
– as class instance, 21
– as type, 18
– constructor, 134
– container, 197
– copying, 58
– creation, 65
– direct manipulation, 57
– factory, 17
– modification, 58, 66
– part, 49, 125
object copy
– deep, 32
– shallow, 32
object modification
– concatenation, 69
– module operation, 69
operation
– call next method, 93, 98
– constructor, 19
– inner, 96
– next method, 93
– send super, 92
– send superfringe, 100
– super, 92
operator
– scope resolution, 92, 97

parameter-passing regime, 134
part object, 49
polyadicity, 174, 219
– default parameters, 174
Polymorphism, 225
polymorphism, 3–5, 14, 15, 156, 159, 164
– ad hoc, 165, 166
– and methods, 167
– and redeclaration, 171
– example operations, 165
– generic, 165, 166
– inclusive, 165
– in dynamically-typed languages, 171
– overloading, 165, 166, 169, 171, 223

252 Index

– – example, 171
– overriding, 169, 172
property
– shared, 68
prototype, 1, 2, 8, 32, 51, 57, 58, 83, 122,

129, 231
– and classification, 59
– as concept, 59
– inter-relationships, 60
– modification, 60
– object creation, 65
– shared slot, 123
– shared structure, 67
prototypes
– components, 64

redefining
– liberality of, 170
redefinition, 166
root
– common, 103
root class, 173
– downcasting, 173

self (pseudo-variable), 129
self reference, 210
shared structure, 25, 69, 70
signature, 164, 221
similarity
– distance, 59
– logical, 59
slot, 22, 202
– access, 23, 220
– constant, 64
– in prototype language, 25
– mutable, 64
– private, 27
– protected, 27
– public, 27
– virtual, 30
– visibility, 25, 26, 88
slots
– and prototypes, 64
specialisation, 34, 90, 100
– of superclass, 35
subclass, 14, 158
– as subtype, 84
subtype, 158

subtyping, 86
– behavioural, 86, 87
superclass, 6, 14, 83
– immediate, 35
– private, 114
– protected, 114
– public, 114
– virtual, 114
superclass chain
– sorted, 111
supertype, 34
supetype, 6

this (pseudo-variable), 129
thunk, 135
topological sort, 113
traits, 69
type, 155, 185, 197, 225, 232
– and class, 156
– and implementation, 185
– and implementation in Sather, 187
– and inheritance, 157
– as algebra, 185
– as class, 156
– discrimination, 161
– dynamic typing, 155
– instanceof operation, 162
– multiple implementation in Ada, 188
– parameter, 166, 168
– parametric, 167, 168
– polymorphic, 168
– static type, 6
– subtype, 6, 156
– supertype, 6
– type-free language, 155
– typecase operation, 162
– untyped language, 155
– variable, 166
type hierarchy, 86

variable
– free, 138
variance, 176
virtual function table, 153
virtual method
– in Smalltalk, 152
visibility, 204

